
!4

PROJECT

MERCURY

i,. i
i

X:554-63-152

f

._-._,/-- 5s_0_

EXTERNAL SYSTEM
PROGRAMS

MARCH -15, 1964

P
L

.

\

GODDARDSPACEFLIGHTCENTER

GREENBELT,MARYLAND

" 8098
(ACCESSION NUMGECR)

(PAGES)

a

(NAS'_(GR OR TMX

(THRU)

"(C6eE) "

_'CATEGO RY)

a •

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND

FOR OFFICIAL USE ONLY

This document describes in detail the Goddard Mer-

cury Real Time Programming system in effect as of
August 1, 1963, and reflects the Computing program
used to support the MA-9 Mercury Mission. It re-

places manuals MC-107, External System Programs;
MC-108, Computer Simulation Programs; and MC-
110, Postflight Reporter Program.

Prepared by IBM for:

Data Operations Branch

Manned Space Flight Support Division
Tracking & Data Systems Directorate
NASA-GODDARD

Released by:

6

PREFACE

This manual, EXTERNAL SYSTEM PROGRAMS, MC-63-4, is
the fourth of four volumes which describe the Project Mercury

Real-Time Programming System. MC-63-4 supersedes the EX-
TERNAL SYSTEM PROGRAMS manual, MC-107; the SIMULATION

PROGRAMS manual, MC-108; and the POSTFLIGHT REPORTER
PROGRAM manual, MC-110, all of which were published in

August 1961 and subsequently revised in July 1962. All program
descriptions presented in MC-63-4 reflect the Mercury computa-
tional system in use during the MA-9 mission of May 15, 1963.

Programs considered to be external to the Mercury opera-
tional system are those which are neither monitor programs nor
processing programs. External programs complement the Mer-
cury operational programming system and may be entered before,
during, or after the mission to perform such functions as: com-
piling the Mercury program, simulating the real-time environ-
ment, writing the operational system tape, dumping selected
portions of core, or analyzing post-mission data.

Text is arranged in five sections: SOS System for Mercury,
Simulation Programs, Utility Programs, System Supporting Pro-

grams, and Postflight Analysis Programs. An index to all pro-
grams in the four manuals is included to allow cross-referencing.

project

mercury

EXT NAL SYSTEM

PROGRAMS

National

prepared for

Aeronautics and Space Administration

Contract No. NAS 5-3486

revised

15 march 1964

Federal Systems Division

International Business Machines Corporation

LISTOFEFFECTIVEPAGESi

• TEo ssterlsk ladlcatu pqes changed, add•d, or dolated by the current change.

D
MC 63-4

TABLE OF CONTENTS

Page

Section 1

1.1

1.2

1.3

Section 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

SOS SYSTEM FOR PROJECT MERCURY

Introduction to SOS

SOS Modified for Mercury

SOS Library Tape

SIMULATION PROGRAMS

OBSERVER Program (OBSER)

HB Subroutine

HC Subroutine

RAE Subroutine

RFBRAE Subroutine

RNRCRD Subroutine

RVCAL Subroutine

SELECTOR Program

SHRED Program

SORT Program

MERGE Program

Simulated Input/Output Control Program (SIC)

Conversion of the Real-Time Mercury System for
Operation with SIC

Open Loop Simulation Program (OLS1)--Mercury
Control Center

Closed Loop Simulation Program (CLS3)--Mercury
Control Center

i-i

1-1

1-59

1-81

2-1

2-2

2-17

2-21

2-21

2-21

2-21

2-27

2-31

2-41

2-53

2-65

2-69

2-81

2-83

2-89

°,°

111

MC 63-4

2.16

2.17

TABLE OF CONTENTS (Continued)

Closed Loop Simulation Program (BCLS2)--Bermuda
to Goddard

Read Low-Speed SIC Tape (RLSST)

Pag__.__e

2-97

2-101

Section 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

UTILITY PROGRAMS

Program to Print Selected DCC Subchannel Input-Output
Data from a Mercury Log Tape (MXCHER)

Program to Print Mercury Log Tape in Octal (MXPOCL)

Program to Print Real Time Core'd Output (MXILCO)

Symbolic Tape Updating Program (COL8ER)

Core Mapping Program (CORMAP)

Priority Indicator Listing Program (MXNDKT)

CHECKSUM Correction Program (SQZSUM)

Tape Key Comparison Program (KEYS)

Low Core Reference Program (LOWCOR)

SQUOZE Deck Comparison Program (COMPAR)

Symbolic Core Dump Program (MXCORE)

SQUOZE Tape Modification Limits Program (SUMARY)

Paper Tape Input Preparation (PAPTAP)

Low-Speed Output Printer Program (MXTHLG)

Log Tape High-Speed Input Program (HSINT)

Log Tape High-Speed Output Program (MXHSPR)

Log Tape Printer Program (MXPRLG)

Log Tape Plotting Program (MXHSPL)

3-1

3-3

3-11

3-21

3-29

3-95

3-97

3-99

3-101

3-103

3-105

3-107

3-111

3-123

3-129

3-141

3-147

3-157

3-163

Section 4

4.1

4.2

4.3

4.4

SUPPORTING PROGRAMS

Monitor Merge Program (MXMRGE)

Mercury System Tape Writer Program (MXSTWl)

Mercury System Tape Loader (MXLOAD)

Extended Definition of Symbols Processor (MXDEFN)

iv

4-1

4-3

4-17

4-29

4-47

4.5

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Section 5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

TABLE OF CONTENTS (Continued)

System Communication During Dual Compilation

(SETORG)

Real Time Transfer Trapping Test Program (MTTEST)

Program to Write the Isolated Writer Portion of the

B4 Tape (WRTB4T)

Program to Write Dumping Portion of B4 Tape

(HOMER)

Isolated Dumping Portion of B4 Tape (ISODMP)

Dump Program Reader (SGENDX)

Program to Initiate Taking Snap Dumps of the
Mercury System (CORING)

Message Tape Writer Program (_OT)

Station Characteristics Tape Writer Program

(UOSTCH)

Station Characteristics Tape Updating Program

(UOSTUP)

POSTFLIGHT ANALYSIS AND REPORTS

Postflight Monitor Program

BCD Output initialization Program (CHUMLY)

Constant Factors Initialization Program (ACTORS)

System Parameter Initialization Program (INITIA)

Log Tape Sort Program (SORTER)

Subchannel 1 Processing Program (GEB)

IP 7094 High-Speed Input Processor Program (IPORR)

Manual Insertion Processor Program (MANIN)

High-Speed Output Tape Writer Program (HSOP1)

BCD Word Conversion Program (A) (BCTB/BCTB1)

BCD Word Conversion Program (B) (BCTB1/BCTBJ)

Time Word Conversion Program (A) (TISWS)

Time Word Conversion Program (B) (HMSTS)

Unit Conversion Program (GCNVE)

MC 63-4

Page

4-55

4-59

4-75

4-77

4-79

4-85

4-89

4-93

4-105

4-113

5-1

5-3

5-17

5-17

5-17

5-21

5-27

5-33

5-39

5-43

5-53

5-55

5-57

5-59

5-61

}
V

MC 63-4

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

Appendix A

Appendix B

Appendix C

Appendix D

TABLE OF CONTENTS (Continued)

Discrete Event Processor Program (GETME)

High-Speed Output Processor Program (DONOUT)

High-Speed Input Processor Program (DONIN)

Launch Phase Processor Program (LAUNCH)

Orbit Phase Processor Program (ORBIT)

Reentry Phase Processor Program (RENTER)

Numerical Integration Program (NUMIN)

IP 7094 Reference Frame Conversion Program
(IPCNV)

B-GE Reference Frame Conversion Program
(GECNV)

True Inertial Coordinate Conversion Program
(MERCNV)

Atmospheric Density Processor Program (ATMOS)

Stagnation Heat Rate Processor Program (HEAT)

Range from Launch Pad Processor Program (RFLP)

Langrangian Interpolation (GRUNGY)

Recovery Area Conversion Routine (RCACNV)

Distance Computation of Earth and Space Track

(DISTAN)

Utility Programs

Program Operating Procedures

PROGRAM INDEX

POSTFLIGHT REPORTER SYMBOLIC DESIGNATIONS

COORDINATE CONVERSION SYSTEMS

REPORT DATA FORMATS

Page

5-67

5-71

5-81

5-85

5-93

5-101

5-107

5-111

5-113

5-115

5-119

5-123

5-125

5-127

5-129

5-131

5-137

5-143

A-1

B-1

C-I

D-I

vi

MC 63-4

Figure

1-1

1-2

1-3

1-4

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

2-16

2-17

3-1

3-2

3-3

3-4

3-5

ILLUSTRATIONS

UAILSC Subroutine Flow Chart

U7INTP Subroutine Flow Chart

C9RVTH Subroutine Flow Chart

LBRWR Program Flow Chart

Observer Program Flow Chart

HB Flow Chart

HC Flow Chart

RAE Flow Chart

RFBRAE Flow Chart

RNRCRD Flow Chart

Selector Program Flow Chart

Schematic Diagram (Shred Tables)

SORT Program Flow Chart

MERGE Program Flow Chart

Simulated Input/Output Control Program (SIC)

OLS1 Program Flow Chart

CLS3 Program Flow Chart

IP 7094 Data, Mercury Control Center-to-Goddard
Message Format

B-GE Data, Mercury Control Center-to-Goddard
Message Format

BCLS2 Program Flow Chart

High Speed Bermuda Input Format From DCC

MXCHER Program Flow Chart

M_XPOCL Program Flow Chart

MXILCO Program Flow Chart

COL8ER Program Flow Chart

LOWCOR Program Flow Chart

Page

1-107

1-113

1-124

1-131

2-10

2-19

2-22

2-23

2-24

2-26

2-35

2-50

2-60

2-67

2-75

2-85

2-91

2-93

2-95

2-99

2-102

3-5

3-14

3-22

3 -43

3-104

vii

MC 63-4

Figure

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

ILLUSTRATIONS (Continued)

MXCORE Program Flow Chart

SUMARY Program Flow Chart

PAPTAP. A Program Flow Chart

PAPTAP. B Program Flow Chart

MXTHLG Program Flow Chart

HSIN7 Program Flow Chart

Examples of Logging Message Formats for HSIN7

MXHSPR Program Flow Chart

MXPRLG Program Flow Chart

MXHSPL Program Flow Chart

Page

3-109

3-121

3-126

3-127

3-131

3-143

3-144

3-155

3-160

3-165

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

MXMRGE General Flow Diagram

MXMRGE Program Flow Chart

MXSTWI Program Flow Chart

MXLOAD Program Flow Chart

MXDEFN Program Flow Chart

SETORG Flow Chart

MTTEST Program Flow Chart

ISODMP Program Flow Chart

SGENDX Program Flow Chart

CORING Program Flow Chart

MXWMOT Program Flow Chart

UOSTCH Program Flow Chart

UOSTUT General Flow Diagram

U0STUP Program Flow Chart

4-10

4-11

4-19

4-33

4-51

4-57

4-65

4-82

4-87

4-9O

4-96

4-111

4-118

4-119

5-1

5-2

5-3

5-4

Postflight Reporter Program General Flow Chart

Posfflight Monitor Program Flow Chart

CHUMLY Program Flow Chart

SORTER Program Flow Chart

5-10

5-12

5-20

5-23

°°°

Vlll

MC 63-4

Figure

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

5-24

5-25

5-26

5-27

5-28

5-29

5-30

5-31

ILLUSTRATIONS (Continued)

GEB Program Flow Chart

IPORR Program Flow Chart

MANIN Program Flow Chart

HOSP1 Program Flow Chart

BCTB/BCTB1 Program Flow Chart

BCTBI/BCTBJ Program Flow Chart

TISWS Program Flow Chart

HMSTS Program Flow Chart

GCNVE Program Flow Chart

GETME Flow Chart

DONOUT Program Flow Chart

DONIN Program Flow Chart

LAUNCH Program Flow Chart

ORBIT Program Flow Chart

RENTER Program Flow Chart

NUMIN Program Flow Chart

IPCNV Program Flow Chart

GECNV Program Flow Chart

MERCNV Program Flow Chart

ATMOS Program Flow Chart

HEAT Program Flow Chart

RFLP Program Flow Chart

GRUNGY Program Flow Chart

RCACNV Program Flow Chart

DISTAN Program Flow Chart

UTILITY Programs Flow Chart

DATA Deck Setup

P age

5-29

5-34

5 -40

5-45

5-54

5-56

5-58

5-60

5-62

5-69

5-74

5-83

5-88

5-99

5-105

5-109

5-112

5-114

5-117

5-121

5-124

5-126

5-128

5-130

5-134

5-139

5-151

ix

MC 63-4

Table

i-i

1-2

1-3

1-4

2-1

2-2

2-3

2-4

2-5

TABLES

Individual Files, Mercury SOS System Tape

IBWR1 Program Stops

IBWR2 Program Stops

Mercury SOS Library Tape Programs

Tape Format Logical Record Shred Output, High Speed
Radar for Goddard

Tape Format Logical Record Shred Output, IP7094

Tape Format Logical Record Shred Output, GE-Burroughs

Tape Format Logical Record Shred Output, Low Speed TTY

Index of Routines and Subroutines Used in SIC

Page

1-73

1-75

1-78

1-82

2-56

2-57

2-58

2-59

2-74

4-1

4-2

4-3

4-4

4-5

Telemetry Format, IP7094 and B-GE

Goddard Teletype Input

On-Line Messages

Station Characteristics Block Contents

UOSTCH Station Identification

Format, Station Characteristics Changes

Card Sequence, Station Characteristics Changes

3-145

3-158

4-97

4-107

4-108

4-114

4-115

X

MC 63-4

Section 1

SOS SYSTEM FOR PROJECT MERCURY

The Share Operating System (SOS) was chosen as the standard programming
system for Project Mercury because of its adaptability to the varying conditions
imposed on a real-time system. This section introduces SOS and contains a

discussion of the differences between the SOS and Share systems and of the
modifications made to SOS to meet the special characteristics of the Mercury
Programming System. Also included are descriptions of the programs used to
write and edit the SOS System tape (IBWR1 and IBWR2, respectively) together
with program descriptions of the Mercury SOS Library tape and of utility com-
putational subroutines.

i.i INTRODUCTION TO SOS

1.1.1 SOS COMPILER

The Compiler in the Share Operating System has three functions: to trans-
late, compile, and assemble. It processes the source program, written in
symbolic language, and produces a tightly encoded binary deck.

Input to Compiler can be symbolic records, library routines or previously
compiled programs combined with subsequent symbolic programs. The output
is a squoze deck of the compiled source program. The name "squoze," adopted
for the output deck, is meant to convey compactness. A squoze deck contains

the source program coded in a compact form which retains the original sym-
bolic information. It is this symbolic output that is loaded, modified, trans-

lated into actual machine language, and executed by the Modify and Load section
of the SOS System.

1.1.1.1 Share Symbolic Language (SCAT)

The mnemonic term SCAT is a contraction of Share Compiler, Assembler
and Translator and is widely used as the name for the symbolic language in the
SOS system. SCAT is the logical extension of the Share symbolic language.
The extensions which have evolved were dictated by the following general
requirements:

a) The capability to recognize all machine instructions for the standard
IBM 7094, for 65K core, and for all SCAT pseudo-instructions.

1-1

MC 63-4

b)

c)

d)

A requirement that IBM 704 programs be compatible with SCAT. The
Compiler (CP) recognizes, with some modification, the 704 symbolic
language (SAP). When a SAP pseudo-instruction is different from its
SCAT equivalent, the Compiler converts it to a legitimate SCAT instruc-
tion. However, SCAT/SAP compatibility does not extend beyond the

compiling phase. Modify and Load accepts only legitimate SCAT codes,
treating all others as illegal.

The incorporation of variable-length mnemonics, which facilitates con-
sistent channel designation and provides a convenient means of specify-
ing macro-instructions to be processed by the Compiler.

For ease of key punching, the variable field should begin in the same
column of every card, regardless of the length of the mnemonic.

1.1.1.2 Symbolic Input Format

The format of the symbolic instruction, with fields fixed at their maximum
limits, is:

Card Columns Description

1-6 Location field or blank

7 Blank

8 - 14 Operation code (including asterisk
for indirect addressing)

15 Blank

16 - 72 Variable field and comments, which

must be separated by a blank

73 - 80 Not Used

Therefore, the mnemonic operation code (beginning in card column 8) may be
from one to six letters in length. At least one blank must follow the last letter;

the number of blanks that may follow must be such that the length of the opera-
tion code plus the number of blanks is less than or equal to eight. If the varia-
ble field does not begin by column 16, it is assumed to be blank.

Four principal parts of a symbolic instruction are recognized: location
symbol, operation code, variable field, and comment field. The location sym-
bol is a name for either a storage location or other expression associated with
the instruction; the precise item named is dependent upon the operation speci-
fied. In all cases, the operation determines the nature of the instruction and

1-2

MC 63-4

guides the interpretation of the various parts. The variable field is construed
in many ways as a function of the operation part of the instruction. In general,
with the location symbol and operation, the variable field gives the complete
instruction specifications. The comment field has the sole function of describ-
ing a remark intended to appear on a listing and is not pertinent to the running

of the program.

The order for the variable field of a 709/7090/7094 symbolic instruction is
address, tag, decrement. These subfields within the variable field are separated
by commas. In all instructions it is possible to omit parts of the variable field.
To omit only an interior part (the tag, for example} it is necessary to have two
commas in adjacent positions, because the first blank encountered in a variable
field terminates that field. TXI A, 0, B and TXI A,, B result in the same word.
Comments may begin after a blank indicating the end of the variable field; how-
ever, for ease in key punching and to maintain uniformity, comments should
begin in column 35. Comments may not begin before column 17.

1.1.1.3 Symbolic Language and Arithmetic Expressions

The basic units of the symbolic language are symbols, numbers, and opera-
tion codes. These units may be combined by punctuation marks, subject to cer-
tain rules, to yield expressions.

A symbol is a combination of from one to six Hollerith characters, at least
one of which is nonnumeric and none are a+, -, *, ?, $, =, comma, or an
imbedded blank. A blank is not considered a character in this case. A symbol
is defined only if it appears in the location field of some instruction; otherwise,
it is undefined. A symbolic instruction should have a location symbol only when
it is necessary to refer to that instruction in the program. An absolute location

symbol, i.e., one containing only numeric characters, is flagged as an error
and is ignored. Leading zeroes are considered legitimate characters of a
symbol.

A number is a combination of digits which may be decimal or octal, depend-
ing upon the operation code of the instruction in which it appears. An operation
code may consist of from three to six alphabetic characters. An expression is
a combination of symbols and integers separated by the following connectors or
punctuation marks:

+ addition * multiplication

- subtraction / division

These connectors have different meanings when used in the BOOL pseudo-

operation (which is defined later}.

1-3

MC 63-4

1. i. 1.4 Evaluation of Variable Field Expressions

Constants in a variable field must be less than 235. They are considered

decimal quantities unless the instruction is a Type D instruction. Examples of
Type D instructions are: RIL 1, RIR 44, SIL 1 and LFT 2. The constants of a
Type D instruction are treated as octal values. Only simple expressions are
permissible in the variable field of these instructions, and the value is computed
modulo 218. With all other instruction types, if the symbol referred to in a

simple expression is octal (Boolean), the address and decrement fields are
treated as 18-bit values and the tag is computed modulo 8. When not octal, the
address and decrement fields are considered as 15-bit values and the tag is
computed modulo 8.

1.1.1.5 Special Characters

The asterisk (*) character has five different meanings in SCAT depending
upon context. As a punch in column 1 of the card, the asterisk defines the card

as a remark or comment card. If it is found immediately after an operation
code, it specifies indirect addressing. As a connector in a variable field ex-
pression, it connotes multiplication. As a Boolean operator, it specifies inter-
section, e.g., the logical AND process. Finally, if it occurs immediately
after another connector or as the first character in a variable field, it must be

recognized as a term. In this context an asterisk is interpreted as having the
current value of the location counter.

The dollar sign character ($) may be preceded by a numerical, alphabetic,
or special character, or it may start a term followed by five or fewer charac-
ters in an expression. These collocations cause SCAT to head the symbol with
the given character rather than the current heading character. Reference from
a headed region to an unheaded symbol is made by preceding the $ with no head-
ing character. Previously, such referencing was also possible by preceding a
$ with zero.

1.1.1.6 Classification of Operation Codes

There are two classifications of instructions: machine and nonmachine.

The latter type are collectively called pseudo-instructions. For purposes of
this discussion, the pseudo-instructions are arbitrarily divided into three
categories, one of which retains the generic name pseudo-instruction. The
Compiler, therefore, recognizes four classes of instructions:

a) Machine instructions

b) Pseudo-instructions

c) Macro-instructions

d) List control pseudo-instructions

1-4

MC 63-4

1.1.1.7 Machine Instructions

A machine instruction (i. e., an instruction using a machine operation)
always generates one 36-bit binary machine word in the object program. The
rules for specifying the location field and the variable field of a machine instruc-
tion have been stated previously. The vocabulary of 709/7094 instructions and
their SCAT mnemonics appears in subsection 1.1.1.11. (For information con-
cerning the operation of these instructions, refer to the 709/7094 Reference
Manual.)

1.1.1.8 Pseudo-Instructions

Unlike machine instructions, some pseudo-instructions may generate more
than one machine word in the object program; others generate no words at all.
The pseudo-operations of SOS have a variety of functions.

The remainder of this section describes the pseudo-operations of the Com-

piler section of SOS (except for those which direct the Modify and Load program).

The mnemonics L and VF in the following paragraphs refer to location
counter and variable field, respectively.

Assignment of Absolute Storage Locations--Origin (ORG)

The basic function of an assembly process is to assign absolute storage
locations to machine instructions. However, there must be an address at which

this assignment begins. In SCAT this value is furnished to the assembly pro-
gram by the program being assembled via the ORG pseudo-instruction. ORG
sets the location counter to the same integer value as that computed for its
variable field. A location symbol associated with an ORG instruction is also
assigned the computed value of the variable field:

Location Operation

Address,
Tag,

Decrement

ORG 100

In the example above, ORG assigns a value of 10010 to the location counter.
The location counter determines the storage location to which the subsequent
instructions are assigned. The first instruction following the ORG card is as-
signed the location of the variable field value, modulo 215, of the ORG card.

A symbol appearing in the variable field expression need not have been
defined previously, i.e., it need not have appeared in the location field (columns

1-5

MC 63-4

1-6) of some previous instruction or pseudo-instruction. However, a symbol in
the expression which is not eventually defined in the program renders the varia-
ble field of ORG noncomputable.

If the program being assembled does not have an ORG pseudo-instruction,
Modify and Load sets the ORG to the lowest location in memory not required by

the SCAT system (300010). Subroutines assembled without ORG can be inserted
into a job where needed as long as they are prefaced by a SQZ control card.

Floating Origins--SYSFLO Table and QORGN Macro

When programs share common storage with either a permanent replacement
(as in real-time loading) or a temporary replacement (as in real-time buffering)
more efficient allocation of core storage may be accomplished if the numeric
equivalents of symbolic locations in job 1 can be made available to the SOS
system during the writing of the job 2, B1 (actually B3) tape. Local modifica-
tions have been made to the SOS system tapes used for Project Mercury which
enable information to be transferred from one job to a successive job via a
table within the IBMonitor section of SOS. Since this table must be maintained

and used in IBMonitor during the Compile or Modify and Load run from job 1
through the last job, any reinitialization of IBMonitor between Mercury dual-
compilation jobs would destroy this table.

a) SYSFLO Table--a 14-celi table in IBMonitor, beginning with and re-

ferred toby the symbolic locationSYSFLO, provides storage for twenty-

eight 15-bitvalues. Each word may contain two values--one in the
decrement, the other in the address, etc., from SYSFLO through
SYSFLO + 13.

When SOS is compiling or modifying a job for a Load and Go run, the
first TCD (transfer card) pseudo-operation, followed immediately by
a BSS or BES pseudo-operation, causes SOS to equate the symbol
associated with the BSS or BES to the value contained in the address
field of the location SYSFLO. Successive combinations of TCD and

BSS or BES pseudo-ops force SOS to extract successive values from
the table. As each value is used, the field containing that value is

cleared. The priority of SYSFLO is given by:

Decrement Address

SYSFLO 2 1

+ 1 4 3

+ 2 6 5

1-6

+ 13 28 27

MC 63-4

b)

Since the first zero field signals the effective end of the SYSFLO values,
the entries must be packed from the top and a field of zero may not be
transferred between jobs via SYSFLO. In addition, between any two
jobs, the values in SYSFLO must be set in correspondence to the SOS

processing order of the TCD-BSS (or BES) combinations in the succes-
sive job which is to produce the SYSFLO reference.

After the final value is used, SOS flags the first location in the table to
indicate that the table has been exhausted. All successive TCD and

BSS combinations are now handled by SOS to origin the symbol at the
value contained in SOS's SYSORG. SYSORG contains in the address
the value of the first available location after the SOS reserved area of
core.

When the value from job 1 has been associated with a suitable symbol
in job 2, this value may be used for any purpose. An example of
SYSFLO usage may be illustrated by the QORGN macro. The SYSFLO
value is used by QORGN in determining an origin which floats, such
that a program in job 2 may be origined after the longer of two pro-
grams sharing the same core area with one of the programs being in
job1.

QORGN Macro--QORGN determines the longer of two (and may be
expanded to determine the longer of three or more) programs and pro-
vides a symbolic location which may be used to origin a third program
after the longer of the previous two programs. QORGN is used to
provide automatic origins for the Mercury Programming System's
real-time loading and buffering.

The QORGN macro is defined:

QORGN MACRO A, B, BP1, AF, BF, ORGSYM

BPI EQU B + 1
AF EQU B/A + 32767
BF EQU A/BP1 + 32767

ORG AF/32767*A + BF/32767*B
ORGSYM PZ E 0

TCD ORGSYM
A BSS 0

HTR 0
END

Where symbol B is the last symbol associated with a particular pro-
gram, or package, i.e., LCSYMB, in job 2, and symbol A are the
symbols to which SOS gives a value from the SYSFLO table in IBMonitor.
ORGSYM is set equal to the larger of A and B and is therefore usable

1-7

MC 63-4

as a symbolic originpoint. ORGSYM receives avalue equal to the larger of
A or B. BP1, AF, and BF are symbols internal to the macro. These

symbols must be uniquely defined in the compilation.

QORGN is executed only by SOS and may be used only by an SOS system
especially modified for this purpose. QORGN is not executed by the
operational tracking program. The files generated by QORGN are used
only to provide interjob communication to SOS and have no function in
the absolute Mercury program tapes.

Block Started by Symbol (BSS)

A BSS can occur anywhere in a program. This pseudo-instruction reserves
a block of storage when the program being assembled demands it. The block
reserved is equal in length to the value of the variable field expression and
extends from L to L +(VF-1). The associated location symbol is given the value
that L has when it encounters the BSS and corresponds, therefore, to the first
word of the block reserved.

Address,

Location Tag,
Counter Location Operation Decrement

250 A BSS 200

450 B XXX XXX

In the example above, the BSS instruction reserves the 200 memory posi-
tions from locations 250 to 449, inclusive. The location symbol A is assigned
to the value 250.

The rules for previous definition of symbols are the same as for the ORG
pseudo-instruction.

Block Ended by Symbol (BES)

A BES may occur anywhere in a program. This pseudo-instruction reserves
a block of storage at the direction of the program being assembled. A BES is
the same as a BSS in every respect except for its result on the associated loca-
tion symbol. This symbol is given the value L + VF and corresponds to the first
word following the block reserved. Whereas the associated location symbol in a
BSS has the value of L, it is assigned the value of L + VF in a BES instruction.

The rules for previous definition of symbols are the same as for the ORG
pseudo-instruction.

1-8

MC 63-4

The variable field of a BSS or BES may specify, as a tag, a code indicating

the format of the data to be stored ultimately in the reserved block of storage.
This specification is not required, but enables debugging programs to make a
meaningful listing of such data. The codes are:

F---Floating-point numbers

X--Fixed-point numbers

O--Octal data

H--Hollerith (binary coded decimal data)

S--Symbolic instruction

C--I/O command

V--Variable Field Definition (VFD)

For example, a programmer writes:

Location Operation Variable Field

ALPHA BSS 50, F

By using F, he is saying to the debugging system: "The 50 cells in the block
beginning at ALPHA are to be interpreted as containing floating-point numbers
when I ask you later to give me the contents of any of these cells."

Transfer Card (TCD)

This pseudo-instruction directs the loading program to transfer control to
the program being loaded. The transfer is made to the storage location repre-
sented by the value of the variable field expression of the TCD instruction.

There can be more than one TCD instruction which may appear anywhere
in the program.

If a TCD has an associated location symbol, the symbol is assigned the
value that L has when it encounters the TCD instruction.

Address,
Location Tag,
Counter Location Operation Decrement

20O A TCD 2500

1-9

MC 63-4

The instruction above sets A equal to 200; transfer of control is made to
location 2500.

End (END)

Since the computer must know where to start assigning absolute storage
locations to machine instructions, it must also know when to stop this process.
In SCAT, the termination of the assembly and loading operations is indicated
by the END pseudo-instruction. It must appear as the last instruction read

during the assembly process of every program.

As is the case with a TCD, the END instruction causes a transfer of control
to be made to the storage location represented by the value of the variable field

expression. The rules governing the associated location symbol are the same
as TCD.

Address,
Location Tag,

Counter Location Operation Decrement

800 A END 1000

The instruction above sets A equal to 800; transfer of control is made to
location 1000.

Equal (EQU)

EQU assigns the integer value given by the expression appearing in the
variable field to the symbol appearing in columns 1-6.

This pseudo-operation is used when the symbol appearing in columns 1-6
specifies a preset program parameter such as the number of items in a group
or any other quantity which is invariant with respect to the location of the pro-
gram in storage. If the symbol in columns 1-6 specifies the location of a piece
of data or an instruction, the pseudo-instruction SYN should be used.

Synonym (SYN)

SYN assigns the integer value given by the expression appearing in the

variable fieldto the symbol appearing in columns 1-6.

The pseudo-operation SYN is used when the symbol appearing in columns

1-6 specifies the location of a piece of data or other quantities whose values

depend upon the location of the program in storage.

i-i0

MC 63-4

In SCAT language, EQU and SYN may be used interchangeably since the
distinction is taken care of automatically by Modify and Load. However, EQU
and SYN have different effects if the binary object program is to be produced in
a relocatable binary form. For the sake of clarity and use in later compilations,
the distinction between EQU and SYN should be made.

Boolean (BOOL)

The BOOL pseudo-instruction is similar to EQU and SYN in that it defines

a location symbol by equating it to the value of the single expression appearing
in the variable field. All numbers in the variable field must be octal. The

appearance of an 8 or 9 in the variable field indicates an error, and the com-
puted value of the field is erroneous.

Computing the value of a Boolean variable field differs from computing the
value of an ordinary expression because the Boolean punctuation marks specify
logical rather than arithmetic operations, and the result is expressed modulo
218.

The punctuation marks, or operators, which may be used in this pseudo-
instruction are:

OPERATOR MEANING

Algebra of Classes

+ Union

709/7094

Inclusive OR

Symmetric difference Exclusive OR

* Intersection AND

/ Complementation Complementation

For example: SYMBL BOOL 505"617 results in an octal 105.

As with the EQU and SYN pseudo-instructions, the BOOL instruction must

have a location symbol associated with it. The variable field of this instruction
must be a single expression. Any division of the field into address, tag, or
decrement causes the tag or decrement parts to be ignored and results in an
error indication.

If the programmer is using the sense indicator register in his source pro-
gram, he may often need to write Type D instructions, the 18-bit address part
of which corresponds to the 18 leftmost or rightmost bits of this special

register (see pp. 51 and 60 of the 709 Reference Manual, A22 - 6501 - 1). If

1-11

MC 63-4

the particular sense indicator positions cannot be conveniently predetermined,
the instruction can be reserved by using:

Location Operation Variable Field

RIR SENSX

:

Later, when the programmer has decided that SENSX should be, for ex-

ample, the rightmost four positions (i. e., positions 32, 33, 34 and 35 of the
sense indicator register), he can write:

Location Operation Variable Field

SENSX BOOL 17

The 17 is interpreted as an octal number equivalent to (000 000 000 000 001 111)2.

Heading (HEAD)

The HEAD pseudo-instruction renames symbols of fewer than six charac-
ters by inserting an additional character at the beginning of each symbol.

The variable field of a HEAD instruction must consist of only one character

or a blank. Any other configuration results in an error indication and is ignored

by the loading and assembly process.

The HEAD pseudo-instruction prefixes the heading character, or blank, to
every location symbol and every variable field symbol of five or fewer charac-
ters encountered subsequent to itself and prior to the occurrence of another
such instruction.

Location symbols and variable field symbols of six characters are not af-
fected by the HEAD pseudo-instruction. This is significant since it is through
the use of 6-character symbols and the punctuation mark, $, that reference
from one headed field to another is possible.

A dollar sign appearing in a variable field is significant for the following
reasons:

a) An expression consisting of a single character followed by a $ and a
symbol of fewer than six characters is equivalent to the symbol headed
by the initial character. For example, X$A is equivalent to A headed by
X. Such an expression is not affected by the HEAD pseudo-instruction.

1-12

MC 63-4

b) An expression consisting of a $ followed by a symbol of fewer than six
characters is equivalent to the symbol headed by a blank. Such an ex-
pression is not affected by the HEAD pseudo-instruction.

The following code illustrates the considerations mentioned above:

Absolute Symbolic Absolute
Location Location Code Address

0 A CLA B 1

1 B CLA A$A 2
HEAD A

2 A CLA B 3

3 B CLA $A 0
4 CLA BSA 5

HEAD B

5 A CLA A$B 3
6 CLA $X 7

HEAD
7 CLA A 0

8 CLA BSA 5
9 CLA COMMON 11

HEAD C
10 CLA COMMON 11

11 COMMON BSS, 1, F 11

Additional information:

a) If no heading character is given, Compiler heads with a blank. Heading
can be discontinued by using HEAD with a blank variable field.

b) Zero is a distinct heading character and indicates a heading.

e) Reference to a headed symbol of five characters cannot be made by
compounding a 6-character symbol of the symbol and the heading
character. Thus, a reference in a variable field of ABCDE headed
by X must be of the form X$ABCDE and not XABCDE.

Decimal (DEC)

This pseudo-instruction provides decimal data to the program being assem-
bled. A single DEC instruction may specify more than one decimal number per
card. Successive words are specified in the variable field and are separated by
commas. The first blank encountered in the variable field terminates it. The

data words generated by this instruction are assigned successively increasing

1-13

MC 63-4

storage locations; the location symbol, if present, is assigned the value of the
storage location of the first word.

The sign of a number is indicated by a plus or a minus preceding the num-
ber, exponent, or binary scale factor. The absence of any punctuation implies
a plus sign.

The variable field expression of a DEC instruction must be a numerical ex-
pression. The only characters admissible in such fields are commas, numerical
constants, plus (+), minus (-), period (.), E, or B.

Data generated by this pseudo-instruction is converted to one of three speci-
fied forms (binary integer, floating-point binary number, or fixed-point binary
number) according to the following rules:

a) Binary integer (with the binary point at the right end of the word) if
neither a period (.), B, nor E appears in the numerical expression.

b) Floating-point binary number if a period (.) or E, or both, but not B
appears in the numerical expression. The appearance of E may be
explicit or implicit.

1) The decimal exponent to be used in the conversion is the number
which immediately follows E. If E is not present, it may be
implied by a signed number.

2) The exponent is assumed to be zero if neither E nor a signed
number appears.

3) If the decimal point does not appear, it is assumed to be at the
right end of the word.

The expressions +12. 345, 12. 345, 1.2345E1, 1.2345 +1, 1.2345E +1,
1234.5E-2, 1234.5-2 and 12345E-3 are all equivalent representations
of the same floating-point number which is normalized following
conversion.

c) Fixed-point binary number if the character B appears in the numerical

expression:

1) The binary scale factor used in the conversion is the number

immediately following B and may be positive, negative, or zero.
(This factor is the count of binary positions between the left end

and the binary point of the fixed-point binary result.)

2) If the decimal point does not appear, it is assumed to be at the

right end of the word.

1-14

MC 63-4

3) The decimal exponent used in the conversion is the number im-
mediately following E or, in the absence of E, implied by a signed
number. If both B and E appear, the order of their appearance is
irrelevant. For example, 1.2E1B4, 1.2B4E1, 1.2+1B4 and
1.2B4+1 are equivalent expressions.

Any word generated by a DEC pseudo-instruction which exceeds the limit of
a machine cell results in a zero and an error is indicated.

In a DEC pseudo-instruction, a blank variable field, successive commas in
the variable field, or a variable field ending in a comma all imply the generation
of a zero.

Octal (OCT)

This pseudo-instruction provides octal data to the program being assembled.
A single OCT instruction may specify more than one octal number per card.
Successive words are specified in the variable field and are separated by com-
mas. The first blank encountered in the variable field terminates it. Data

words generated by this instruction are assigned successively increasing stor-
age locations and the location symbol, if present, is assigned the value of the
storage location of the first word. (OCT is similar to the DEC pseudo-
instruction except for the kind of data generated.)

Octal numbers may be preceded by plus or minus signs; the absence of any
sign implies a plus sign.

Octal numbers appearing in the variable field of OCT may consist of from
one to twelve octal digits. The octal number may be signed if it is no greater
in magnitude than 377777777777. If twelve digits appear, the following equival-
ences exist with respect to the sign and high-order digit: -0 = 4, -1 = 5, -2 = 6
and -3 = 7. If a sign appears with an octal number greater in magnitude than
377777777777, if more than twelve digits are written, or if any characters other
than digits 0-7 appear in the variable field of this instruction, the conversion
results in zero and an error is indicated.

In an OCT pseudo-instruction, blank variable field, successive commas in
the variable field, and a variable field ending in a comma all imply the genera-
tion of the zero.

Binary Coded Information (BC1)

This pseudo-instruction provides Hollerith data in standard binary coded
decimal form to the program being assembled. The variable field of this instruc-
tion consists of one digit from 1-9, followed by a comma, followed by any charac-

ters (including the blank) which are acceptable to SCAT. Specified characters

1-15

MC 63-4

following the comma are packed together six to a 709/7094 word, and these
words are assigned successively increasing storage locations. The number of
words generated is specified by the digit preceding the comma. If a comma
does not follow the first digit of the variable field, an error indication is given.
Any location symbol associated with a BCI instruction is assigned the value of
the storage location of the first word generated by the instruction. The use of
another BCI card is required for more than nine words.

Library (LBR)

The LBR pseudo-instruction is used to extract a subroutine from a library
tape and incorporate it into the program being assembled. The complete for-
mat is:

Location Operation

SUBR LBR

Address,
Tag,

Decrement

IDENT, U, CHANNEL
AND TAPE NUMBER

If present, the location symbol is assigned to the first instruction in the
library program, provided that the first instruction is not EQU, SYN or BOOL.

If the first instruction already has a location symbol, it is replaced by the loca-
tion symbol of the LBR instruction.

IDENT and the Channel and Tape Number are used only to locate a subrou-
tine in the tape library. The IDENT may be a symbol or an integer. If it is a
zero or a blank, the location symbol is used as the identification. If the Channel
and Tape Number are zero or blank, it is assumed that the subroutine is on the

SCAT library tape, and the location symbol is used as the label in this case.

The symbol U (unrelativized) indicates to SCAT that the library subroutine
is not to be relativized. If the tag field contains any other symbol or is blank,
the program is to be relativized. Relativization is the process by which all
addresses in the library subroutine are expressed relative to the entry points
in the library program.

The SAP pseudo-instruction LIB is changed by SCAT to an LBR and executed

accordingly. However, the following conditions are assumed:

a) The subroutine is on the system tape.

b) The subroutine is relativized.

c) The location symbol of LIB serves as the identificationof the subrou-

tine being called for by LBR. All addresses within a subroutine are

expressed relative to the base point address.

1-16

MC 63-4

Variable Field Definition (VFD)

VFD is used to specify the division of words in other than standard prefix,
decrement, tag, and address fields. The variable field consists of defining
expressions, or subfields, which may specify three types of information:
symbolic, octal, and/or Hollerith. These subfields within the variable field

are of the following form:

nl/E 1, On2/E 2, Hn3/E 3

In the example above, n is a decimal constant indicating the number of bits to be
occupied by the subfield; E is an ordinary variable field expression; H indicates
a Hollerith subfield; and O indicates an octal subfield. All subfields are termi-

nated by a comma or blank; these may not be included among the specified char-
acters. If the given expression is longer than the designated n bits, the value of
the subfield is taken modulo 2 n, i.e., the rightmost n bits are used. If it is
shorter, the leftmost bits are filled in with blank characters in the case of a

Hollerith subfield and with zeros for all other types of subfields.

The first subfield specified begins at the leftmost part of the first word
generated. If a location symbol appears, it is equated to the location of this
word. The next subfield begins to the right of the previously defined subfield.
If a subfield extends beyond the end of a word, it is continued from the left end
of the next word.

There is no limit to the number of subfields which may be specified by this
pseudo-instruction; however, the length of any subfield cannot exceed 63 bits.

All subfields give the actual expression and not the location of the expres-
sion. All expressions are computed modulo the length of the\subfield rather
than in the usual manner.

The expressions of the VFD variable field may be either ordinary or Boolean,
or both, but they cannot both be in the same subfield.

Unless prefixed by O, the numbers in the variable field expression are to
the base 10 even when they occur with Boolean symbols.

Et Cetera (ETC)

ETC is used only to extend the variable field of the previous instruction.
The variable field of the previous instruction must be terminated by a comma.
If the comma has significance within the field, the break must be made at an
insignificant comma. If the previous variable field does not terminate with a
comma, a comma is assumed and an error is indicated. In any event, the

1-17

MC 63-4

variable field of an ETC pseudo-instruction is considered an extension of the
variable field of the previous instruction, commencing at a comma, i.e., with
a complete expression.

An ETC pseudo-instruction may not have a location symbol associated with
it. The following points about ETC should be clearly understood-.

a) If a comma has significance within a field which is being extended by an
ETC instruction, the break must occur at a comma which separates
fields, i.e., the comma signalling the ETC must not be introduced with-
in an expression.

b) The variable field of ETC does not begin with a comma. In fact, it does
not differ from any other variable field. In the preliminary descrip-
tion of SCAT, it is stated that "the variable field of an ETC pseudo-
instruction is considered an extension of the variable field of the pre-
vious instruction, commencing at a comma, i.e., with a complete
expression. " This is true but could be misleading. The critical word
is "at"-the expression commences immediately after a comma, but does
not include the comma.

c) An ETC may follow only a VFD pseudo-instruction, the MACRO pseudo-

instruction, or any operation code calling for the generation of a system
or programmer macro, and nothing else.

Remarks (*)

The pseudo-instruction asterisk, *, (indicated in column 1 of a card) enters
commentary material, which is to appear on a listing into the program being
assembled. The remaining 71 positions of the symbolic card may be used as a
comment field.

This pseudo-instruction has no location field (the asterisk is not recognized
as such), operation code field, or variable field. It has no effect upon the
assembly process.

1.1.1.9 Macro-Instructions

A macro-instruction generates a word or a sequence of words. Parameters
required by the macro subroutine must appear in the variable field of the macro-

instruction. These parameters are incorporated into the word or sequence of
words generated by the macro-instruction during the compilation (rather than at
the execution time) of the object program.

1-18

MC _ A

There are two types of macro-instructions in SCAT:
mer. System macros are provided for in the Compiler.

are innovated in the source program.

system and program-
Programmer macros

System Macro-Instructions

The generation of a system macro-instruction is called for when its code
name appears in the operation code field. The variable field specifies the param-
eters to be used in the generated sequence of words. Any location symbol
associated with the macro-operation is assigned as the location symbol of the

first of the generated words.

At present there are two macro-instructions which have been incorporated
into the Compiler: BEGIN and RETURN. It is assumed that many such macro-
instructions will be available in the Compiler and that others will be added by

installations to perform special jobs.

a) BEGIN K, T, I, E--the BEGIN macro-instruction generates the basic
subroutine linkage recommended by the Share Operating System Com-
mittee. The parameters K, T, I and E are defined as follows:

K--location of the normal return relative to the TSX. The exit trans-

fer is TRA K, 4.

T--specification of the index registers to be saved. Index register 4
should always be saved as a debugging aid.

I--If I is 1, the sense indicators are to be saved and restored; if I = 0,

or blank, they are not to be saved or restored.

E--specifies whether to save and restore a cell to indicate what channel

traps should be enabled.

The number of resulting instructions equals 2X + 3I + 2, where X is
the number of index registers specified by T and I is as defined above.

The maximum and minimum sequences for the corresponding macro-

instructions are given below.

Maximum Sequence:

SR BEGIN 2, 7, 1 SR TXL *+7

AXT 0,4

AXT 0, 2
AXT 0, 1
LDI *+2

TRA 2,4

1-19

MC 63-4

b)

PZE

STI *-1

SXA *-5, 1

SXA *-7, 2

SXA *-9,4

Minimum Sequence:

SR BEGIN 2, 4 SR TXL *+3

AXT 0,4
TRA 2,4
SXA *-2,4

A RETURN SR, n--this macro-instruction specifies the error code and

generates the instructions necessary for the normal and error exits
from the routine. If present, A is the location of the first generated
instruction; SR identifies the subroutine. This identification is neces-

sary since RETURN need not refer to the most recent BEGIN macro-
instruction. The error code, n, is stored in the decrement of the first

generated instruction of the associated BEGIN.

If no error return procedure is desired, n is zero or blank. In this
case, one instruction results:

TRA SR + 1

If n is specified, the following sequence is generated:

AXT n, 4
SXD SR, 4
LXA SR + 1, 4
TXI SR+ 2, 4, i

The use of the system macro-instructions is illustrated below:

Source Program Object Program

SR BEGIN 2, 7, 1
TPL SR2

SR1 RETURN SR, 1
SR2 DVP X

STQ Y
SR3 R ETURN SR

SR TXL *+7

AXT 0, 4
AXT 0, 2
AXT 0, 1
LDI *+2

TRA 2, 4
PZE
STI * -1

SXA *-5, 1
SXA *-7, 2

1-20

MC 63-4

Source Program Object Program

SXA *-9, 4
TPL SR2

SR1 AXT 1, 4
SXD SR, 4
LXA SR + 1, 4
TXI SR+2, 4, 1

SR2 DVP X

STQ Y
SR3 TRA SR+ 1

Programmer Macro Instructions

In addition to system macro-instructions, the Compiler processes macro-
Instructions defined by the programmer for use in the program being compiled.
The definition is introduced to the Compiler by the MACRO pseudo-instruction
which must have the code name of the programmer macro in its location symbol
field and the code MACRO in its operation field. The location symbol must be

from one to five characters in length, must be completely alphabetic, and must
not be the code name of a machine operation, a pseudo-operation, or a system
macro-operation. If the given code name is that of a previously defined pro-
grammer macro-instruction, the new definition replaces the former one.

The MACRO card lists in its variable field the parameters to appear in the
defining example. All these parameters must be nonconstant. The variable
field may be extended by ETC cards. However, the maximum number of para-
meters which can be specified by a MACRO pseudo-instruction and its associated
ETC cards is 32. They are separated by commas.

The instructions which constitute the aefining example follow the MACRO
card in a sequence terminated by an END card. A defining instruction may have

in its variable field any valid combination of symbols and connectors. All loca-
tion symbols are variable field symbols of the defining example and must have
appeared in the parameter list of the MACRO card.

Although the example used to illustrate the technique of writing macro-
instructions shows all the variable field symbols as appearing in the parameter
list, it is not necessary that such symbols be included among the parameters.
However, all location symbols must appear elsewhere in the program.

If symbols appear in the parameter list and elsewhere in the program,
preference is given to their definitions in the parameter list in attempting to
define a programmer macro-instruction.

1-21

MC 63-4

The following example illustrates a MACRO pseudo-instruction and its
definition.

POLY

DPVAR

MACRO COEFF, INVAR, DPVAR, DEG

ETC T, Z
AXT DEG, T

LDQ COEFF
FMP A$INVAR
Z COEFF + DEG + 1, T
XCA

TIX DPVAR, T, 1
END

The location symbol of the MACRO pseudo-instruction becomes the opera-
tion code of the defined programmer macro-instruction. The number of instruc-
tions generated by a programmer macro-instruction is always the same as the
number in the defining example. For example, the symbol POLY (defined above)
could be used to form the macro-instruction:

POLY C1 + 10, X, FX, 3, 4, FAD

which would then generate the following sequences, or skeleton, in accordance
with the pattern of the defining example:

FX

AXT 3, 4
LDQ C1 + 10
FMP A$X
FAD C1 + 14, 4
XCA

TIX FX, 4, 1

In the coding example, the first two instructions of the defining example are:

POLY MACRO
ETC

COEFF, INVAR, DPVAR, DEG

T, Z

The entire example is correct as shown. It is desirable, however, to be very
explic it about the following:

A parameter used in the defining example must
not be the mnemonic for any instruction.

As the example shows, it is permissible to have one of the parameters
represent an operation code in the manner in which Z stands for FAD. This
means that an operation code may be included among the parameters of a de-

fined macro-instruction, as the following example illustrates:

POLY CI+ i0, X, FX, 3, 4, FAD

1-22

MC 63-4

The restriction mentionedhere applies only to the parameter list of the defining
example.

A system macro can occur in the definition of a programmer macro; a pro-
grammer macro cannot occur in the definition of a programmer macro.

Note that the parameters of the defined macro-instruction may be symbolic
or absolute, that they have a one-to-one correspondence with the dummy param-
eters of the MACRO pseudo-instruction, and that they have replaced the dummy
parameters in the generated skeleton. Symbolswhich are to appear in the varia-
ble fields of the generated instructions may appear elsewhere in the source pro-
gram. However, symbols to appear in the location fields of the generated
instructions must not appear elsewhere in the program. This would result in
multiple definition of the symbols.

Properties of Both System and Programmer Macro-Instructions

a) A location symbol is identified with the first instruction generated.

b) The variable field may consist of expressions and simple symbols.
Any expression which ultimately appears as a divisor of a fraction

in a variable field may have only one symbol.

c) The variable field may be extended by ETC cards.

1.1.1.10 List Control Pseudo-Instructions

The Compiler provides the following as a listing: symbolic program with
comments and alter and relative numbers; page heading, page number, and date
on each page; an optional octal or decimal absolute program; error tables con-
taining duplicated symbols, undefined symbols, and the total number of error-

flagged instructions; and an optional symbol table which,gives the symbol and
• • • _- o •

page number. The list may be used m finding symbols in the listing when no
absolute program is printed.

The following list control pseudo-instructions are provided to edit the list-
ing of any program:

a) LIST--the LIST pseudo-instruction causes printing in the normal mode--
all cards are listed without printing in detail, i.e., without printing
words generated by pseudo-instructions (OCT, VFD, DEC, LBR and
BCI) or by macro-instructions.

b) UNLIST--an UNLIST instruction completely suspends printing until a
LIST instruction is encountered.

1-23

MC 63-4

c) DETAIL--if the instruction DETAIL (with a blank variable field) is en-

countered, any printing which is currently in progress continues with
complete detail, i.e., the machine words generated by macro-instruc-
tions (system and programmer macros), LBR, DEC, OCT, BCI and
VFD instructions, are printed. The effect of a DETAIL instruction is
nullified when a TITLE, LIST, or UNLIST instruction is encountered.

d) TITLE--a TITLE instruction causes any printing currently in progress
to be continued in the normal mode (i. e., without any detail) until a sub-
sequent DETAIL instruction or an UNLIST instruction is encountered.

If printing is already in progress in the normal mode, or if no printing
is in progress at all, a TITLE instruction has no effect.

1.1.1.11 SCAT 709/7094 Machine Instructions

Included in the list of machine instructions (although they are not actually
machine instructions) are those operation codes which may be used to assign
arbitrary values to the prefix and sign of calling sequence words. They are
listed as a group below:

Alphabetic Code Name Octal Code

MZE Minus zero -0
MON Minus one -1
MTW Minus two -2
MTH Minus three -3
PZE Plus zero +0
PON Plus one +1
PTW Plus two +2
PTH Plus three +3

FOR Four - 0
FVE Five -1
SIX Six -2

SVN Seven -3

The codes listed below with information concerning address (A), tag (T),

decrement (D), and indirect addressing (I) appear under various headings and
are defined as follows:

N--this entry under the columns A, T, D and I indicates that the cor-
responding instruction should not have an address, tag, decrement
or indirect address, respectively. A zero in the address, tag, or
decrement does not violate this restriction. If the prescribed field
is specified, it is processed as given and an error is noted.

1-24

MC 63-4

Y--this entry under a column heading indicates that the specified parts
of the corresponding instruction should occur. If the field is to be
provided by the program, a zero should be used.

O--this heading under column A indicates that the address field must be

an octal number or Boolean symbol.

I--this entry under column T indicates that the tag field, if specified,
must be a 1 or an expression with an equivalence of 1. No other non-
zero tag is permitted.

C--there are six instructions (CAQ, CRQ, CVR, VDH, VDP, VLM)
which use the decrement field as a count. C appears under column

D of these instructions to indicate that the count is required.

1.1.2 SOS PRODUCED PROGRAM LISTINGS

This subsection describes the form of program listings produced by the SOS
system. The material is included here to introduce the Modify and Load pseudo-
operation presented in subsection 1.1.3, since references to information in the
program listings are necessary in that subsection.

The purpose of the SOS listing facilities is to provide means of obtaining
necessary information when making program modifications. Listings produced
by SOS are made in symbolic form since this is the most useful method for
determining necessary changes.

Symbolic listings of a squoze deck reproduce, with some exceptions, the

symbolic source deck program including modifications incorporated by the
punching of a new squoze deck. The exceptions never reproduced are:

a) Invalid operation codes, which are replaced in the listing by///.

b) Invalid symbols, such as those longer than six characters, which are
replaced by//////.

c) The shortened forms of extended operation codes which are changed
and listed in their extended forms, e.g., the instruction WRS 1169 is
listed as WTBB 1.

Also, words generated by the BCI, DEC, LBR and OCT instructions or by
macro-instructions are not normally listed in detail. Instead, only a title line
and the first word generated by these instructions are printed. However, these

may be listed in detail if the pseudo-op DETAIL is used as previously defined.

1-25

MC 63-4

When a squoze deck is listed, the comments are aligned with the first com-
ment in the program and therefore may not be lined up exactly as in the source
deck listing.

Symbolic listings show the job title, page number, and date in the upper
right-hand corner of each page and are followed by 50 lines of printing. The
listing itself consists of several parts.

The symbolic instructions for the program are listed, and octal equivalents
are normally given. These instructions are assigned numbers from two refer-
ence systems (i. e., relative and alter numbers) as described below.

Appearing next, at the option of the user, is a listing of all defined symbols
used in the program. These symbols appear five on each line, in alphabetic
order. Multiply-defined symbols appear at the end of the table with the numbers
of the pages on which they appear.

C

1.1.2.1 Reference Systems

The two numbering systems previously mentioned (relative and alter) are
used to refer to words in a program. These numbers are assigned initially by
the Compiler and are changed, if necessary, by Modify and Load when a new
squoze deck is punched.

Relative Numbering

A relative number is an integer which indicates position of a machine word
relative to a preceding word having a location symbol. The positions thus indi-
cated are the relative positions of instructions the last time a squoze deck was
punched.

Since relative numbers, in a sense, indicate storage locations occupied by

machine words, they are assigned only to those instructions which, when loaded
for execution, occupy locations. Thus, relative numbers are never assigned to
principal pseudo-instructions (BES, BOOL, BSS, END, EQU, HEAD, ORG,
SYN, TCD), generative pseudo-instructions (BCI, DEC, DUP, LBR, OCT), or
programmer macro-instruction definitions.

Relative numbering begins when the first location symbol of a program is
encountered. The word associated with this symbol is numbered 0 (although not
shown on listings) and the next word is numbered +1. Numbering continues until
either another word with a location symbol or an instruction with a principal

pseudo-operation is encountered. When a new symbol is encountered, the proc-
ess is started again. If, however, relative numbering is suspended by one of

the pseudo-operations, it is not reinitiated until a new symbol is encountered.

t

q
1-26

MC 63-4

Words for which a positive relative number cannot be computed are given a nega-
tive relative number, i.e., a number relative to a succeeding symbol, if that can
be computed. If neither can be computed, no relative number is shown.

Although only one relative number is shown on the listing for a given word,
there exists, in general, many other equivalent relative numbers, both positive

and negative, any one of which may be used when referring to that word. For
example, in the following list, the word numbered +1, relative to the symbol

MASK, has the equivalent number +7, relative to RESTOR, or -1, relative to
WRITE, etc.

82 RESTOR AXT **0, 1
83 +1 AXT **0, 2
84 +2 AXT **0, 4
85 +3 AXT 2, 4
86 +4 SLN 1
87 +5 TRA PRINT
88 MASK OCT 373737373737
89 +1 OCT 377737773777

90 WRITE PZE WKAREA,, 24
91 IMAGE BSS NUMBER, 0
92 NUMBER EQU 24
93 ZERO EQU 0
94 TSTBIT PZE

95 END PRCOMM

RESTOR
INDEX REGISTERS
CONTENTS
RETURN
TURN SENSE LIGHT 1 ON

STORAGE FOR TEST BIT

There is no number for a word relative to a symbol which is separated from
that word by a principal pseudo-operation. For example, in the listing the
words preceding the BSS with the location symbol IMAGE have no numbers
relative to the symbol TSTBIT.

Alter Numbering

Alter numbers are numbers for the symbolic cards in a source program
deck; they are assigned to all cards except:

a} Those which contain ETC and MACRO instructions

b) Those which define programmer macro-instructions

c} The Modify and Load pseudo-instructions

Generative pseudo-instructions (such as BCI) and programmer macro-
instructions are assigned alter numbers. The words generated by the instruc-
tions are not assigned numbers.

1-27

MC 63-4

1.1.2.2 Sample Listing

The following sample presents the data found on an SOS symbolic listing:

a) Storage locations in octal

b) Octal equivalent of each instruction

c) Alter numbers

d) Symbolic locations

e) Relative numbers

f) Operation codes

a

35230

35231
35232
35233
35234
35235
35236

35237
35240

35241
35242
35243
35244
35245

35246

g) Variable field (containing the address, tag, and decrement portions
and/or a comment section)**

b c d e f g

TRI FUN HLS 121 01/_ 1 Page 1

i* TRIG FUNCTION Problem
2* HOMER SNIDER

3* JOB VGPP, SIN, COS
4 ORG 15OOO

0 77400 1 00132 5 XA AXT 90, 1 i Generate

0 50000 0 35602 6 XAI CLA ZERO _fixed-
0 40000 0 35736 7 + 1 ADD ONEX _point
0 60100 1 35736 8 XA2 STO FIXED-91, 1 _numbers
2 00001 1 35232 9 XA3 TIX *-2, 1, i _0to 90

0 77400 1 00022 10 XA4 AXT 18, 1 _Generate

0 50000 0 35737 11 XA5 CLA ONEF _floating-
0 30000 0 35737 12 + 1 FAD ONEF point
0 60100 1 36010 13 XA6 STO Float-18, 1)numbers
2 00001 1 35237 14 XA7 TIX *-2, 1, 1 _2 to 19
0 50000 0 35737 15 XA8 CLA ONEF Float one.
0 60100 0 35740 16 + 1 STO E

0 77400 2 01166 17 + 2 AXT 630,2

0 77400 1 00266 18 + 3 AXT 182, 1
CORE FIXED, X, 0, 0

0 62500 0 19 CORE 1 STL 2169

**The variable field section must start in column 16. The comment section

must be separated from the end of a preceding variable field by at least one
blank. In no case can it start to the left of column 17.

1-28

MC 63-4

i.I.3 SOSMODIFY AND LOAD

The input to the SOS Compiler is a symbolic source program from which a
compact binary-coded symbolic (squoze) program deck is produced. This deck
contains all information supplied in the source program, including remarks
cards and comments from instruction cards. Squoze decks produced by the
Compiler may be used with symbolic decks as input to subsequent Compiler
passes to produce one squoze output deck. Thus, a program can be written
in parts and each part debugged before all are combined.

Squoze decks produced by the Compiler are also used as input to Modify
and Load. Since all symbolic information is available, Modify and Load has

three major advantages over previous assembly systems:

a) Changes in symbolic form can be incorporated into the program by
Modify and Load.

b) Symbolic changes do not require the source deck to be reprocessed
by the Compiler.

c) Symbolic information is available and may be retained for printing
during debugging runs, thus making debugging easier.

The main functions performed by Modify and Load are:

a) Modification of a squoze program on the basis of symbolic information
supplied with the squoze deck.

b) Loading the modified version of a program into storage in preparation
for execution of the program.

In addition to the above, Modify and Load also offers the following features:

a) When desirable, a new squoze deck incorporating symbolic modifica-
tions may be prepared. (A new squoze deck is automatically prepared
when a modification affects a heading card.) Generally, this option
should be exercised when the number of modification cards is approxi-
mately equal to the number of cards in the squoze deck.

b) A symbolic listing of a program can be prepared from a squoze deck
which includes no modifications. (A new symbolic listing is automati-
cally prepared when a new squoze deck is punched.)

c) An absolute binary version of a program may be obtained from a squoze
deck. Although this option is available to the user, little benefit is
derived by exercising the option until a program has been completely

debugged, since the debugging and modification features of SOS can only
be used with squoze program decks.

1-29

MC 63-4

1.1.3.1 Pseudo-Operations

The SCAT language includes five pseudo-operations by which changes may
be made to a program at Modify and Load time. The use and effect of these
pseudo-operations are described below.

To accomplish modifications, the modification instructions and any words
to be inserted in a program are punched in symbolic form and used as input with
the squoze deck. The changes indicated in these cards are made in the program
before it is loaded into storage, but do not affect the squoze deck until a new
deck is punched. At that time, the changes are physically incorporated in the
new squoze deck.

The effects of the modification pseudo-operations, when loading a program
into storage and when preparing a new squoze deck, are equivalent to and could
be accomplished by making the required changes in the original symbolic source
program, reproeessing with the Compiler, and then loading the new squoze deck.
In the discussion that follows, only the effects which the pseudo-operations have
on the squoze deck are indicated.

Throughout the discussion, each change is indicated as though it were the
only one affecting the program, regardless of the actual number. That is, all
changes must be indicated in terms of the current deck and the associated listing.

CHANGE

The CHANGE pseudo-operation can be used to delete words from a program,
to insert additional words into a program, or to do both, depending on the form
of the instruction. When CHANGE is used, modifications are specified in terms
of relative numbers.

CHANGE instructions may be used to delete or insert words with which loca-
tion symbols are associated, in which case the location symbol is also inserted
or deleted. When a word which has a location symbol is deleted, the symbol is
deleted from the dictionary and may, therefore, be used subsequently as a loca-
tion symbol for another word. No location is required with CHANGE; if one is
present it is ignored.

Two forms of the CHANGE instruction are permissible.

] Location Operation
I

i I 2 6 7 8 14 15

I
I CHANGE A+n, B+ mI

The first is:

Address, Tag, Decrement/Count /

16

1-30

MC 63-4

A + n and B + m represent relative expressions, i.e., A and B are symbols and
m and n are integers which may be positive, negative or zero.

This form indicates that all words in location A + n to B + m, inclusive, are

to be deleted from the program. If, in addition, symbolic instruction cards im-
mediately follow an instruction in this form, the instruction also indicates that
the words in the symbolic cards are to be inserted beginning with location A + n.
Since insertions are made as in an assembly, the words following B + m are
automatically adjusted and the number of insertions and deletions need not be
equal.

When any, but not all, of the words generated by either BCI, DEC, LBR,
MACRO, or OCT are deleted by a CHANGE, each of the subfields remaining
from the original instruction is carried as a separate word and is assigned a
separate alter number. In the listing, however, only the absolute word and
relative and alter numbers are shown. No symbolic information is shown in
the operation, variable, and comments fields. In all other changes to which a

CHANGE can apply, the comments associated with deleted words are deleted
from the squoze deck; remarks cards falling within the range of deletion by a
CHANGE are not deleted from the program.

When a CHANGE instruction of the form shown above affects a headed area,
it must be written:

Location Operation

1 2 6 7 8 14 15

CHANGE

]

Address, Tag, Decrement/Count C

16
!

HA, HB +m (

where H represents a heading character.

The second form permitted is:

Location Operation

1 2 6 7 8 14 15

CHANGE

/

Address, Tag, Decrement/Count (_

16

A+n

where A is a symbol and n is an integer which may be positive, negative, or zero.

1-31

MC 63-4

This form of a CHANGEinstruction indicates that the symbolic instruction

cards which immediately follow it are to be inserted between the words in loca-
tion A + n and A + n + 1. No deletions are made. If no symbolic cards follow an
instruction in this form, the instruction is ignored.

When a generative pseudo-operation is inserted into a program by means of
a CHANGE instruction, the individual terms are not assigned separate alter
numbers.

When insertions are to be made in a headed area, the second form of the

CHANGE instruction is written:

Location Operation

2 6 7 8 14 15

CHANGE

Address, Tag, Decrement/Count

16

K$A+ n

where K represents a heading character and A + n is as previously described.

In the following list of restrictions, all statements are made in terms of
the headed forms of CHANGE. These restrictions can be applied to the

unheaded forms by considering an unheaded symbol to be headed by a blank.

Restrictions:

a) In a CHANGE instruction of the first form, H$A + n must be either

less than or equal to H$B + m; otherwise, the CHANGE and the

symbolic cards following it are ignored.

b) No principal pseudo-operation (BES, BOOL, BSS, END, EQU,
HEAD, ORG, SYN, TCD) may appear within the range of the

symbols A to B + m.

c) No principal pseudo-instruction, listing pseudo-instruction, or
remarks card may appear as an insertion by means of a CHANGE.
Any insertion which violates this restriction is ignored.

d) Remarks cards and listing pseudo-operations cannot be deleted by
a CHANGE. When remarks cards or pseudo-operations appear
between H$A + n and H$B + m, inclusive, they are not affected

by the CHANGE.

e) No CHANGE instruction should specify the deletion of only part of

the words generated by a VFD pseudo-operation.

1-32

MC 63-4

f) If a programmer macro-instruction is inserted by means of a
CHANGE, the definition must also be included with the group of
modifications. This does not mean that the definition must be
included with the same CHANGE that is to insert the macro-

instruction. Instead, it may be included by an ALTER or by
another CHANGE. The definition may also be placed in front
of the group of modifications and need not be preceded by a
Modify and Load pseudo-operation.

g) A modification by a CHANGE instruction must not overlap another
modification by an ALTER (see below) or a CHANGE.

Example 1: Assume that the instructions with the alter numbers 79 and 80

in the following listing are indicated to be in error.

78 1 TRA CLEAR + 4

79 EXIT AXT ,1
80 1 /// 1
81"

RE TURN

IF SENSE LIGHT 1 IS ON DO NOT
RESTORE INDEX REGISTER 1

To remove the error indication by means of a CHANGE, the following in-
structions are necessary:

I
I

112

I
EXIT

I

Location Operation Address, Tag, Decrement/Count

6 7 8 14 15 16

(NOTE:

CHANGE EXIT, EXIT+ 1
AXT **0, 1
SLT 1

**0 was arbitrarily selected to indicate modified addresses.)

(
(

Assuming there are no modifications which affected the alter numbering of
previous instructions in the listing, the instructions corrected would appear in
a listing of the modified deck as:

78 +i TRA CLEAR + 4

79 EXIT AXT **0, 1
80 +i SLT 1

81"

RETURN

DO NOT RESTORE IR 1

(The octal absolute has been omitted for the sake of clarity; however, the abso-
lute equivalents would also be changed.)

1-33

MC 63-4

Example 2: Assume that the instruction SLT 1 is to be inserted following
the instruction which has an alter number 9 in the list below without deleting

any instructions.

6 PRCOMM CLA 1, 4
7 +1 TDL * 2
8 +2 WPDA
9 +3 WPDA

1O +4 SXA RESTOR, 1
11 +5 SXA RESTOR +1, 2

GET PRINTER CONTROL WORD

DOUBLE SPACE PRINTED IF

CONTROL NEGATIVE, SINGLE IF+
SAVE INDEX
REGISTER

The required modification cards are:

Location Operation

1 2 6 7 8 14

CHANGE
SLT

15

Address, Tag, Decrement/Count

16

!

PRCOMM + 3 t'
1

After this change has been made, the listing appears as follows (assuming
that there are no changes which affect previous instructions):

6 PRCOMM CLA 1,4
7 +1 TPL * +2
8 +2 WPDA
9 +3 WPDA
10 +4 SLT 1

11 +5 SXA RESTOR, 1
12 +6 SXA RESTOR + 1, 2

GET PRINTER CONTROL WORD

DOUBLE SPACE PRINTERIF

CONTROL NEGAT_E, SINGLEIF +

SAVE INDEX

REGISTER

ALTER

The ALTER pseudo-operation is analogous to CHANGE in that it may occur
in two forms similar to those of CHANGE and may be used to make insertions,
deletions, or both. ALTER, however, inserts and/or deletes the equivalents of
symbolic source program cards instead of machine words.

There are two permissible forms for ALTER. The first is when N 1 and N 2
represent alter numbers.

1-34

MC 63-4

Location Operation

1 2 6 7 8 14 15

Address, Tag, Decrement/Count

16

ALTER N I, N 2

(

This form indicates that the information corresponding to alter numbers N 1
through N2, inclusive, is to be deleted from the program. If symbolic cards
are associated with an ALTER instruction in this form, the instruction also

indicates that the cards are to be inserted into the program between N 1 -1 and
N2 +1. As with CHANGE, the number of insertions need not be equal to the

number of deletions since the words following N 2 are automatically adjusted.

In the second form N is also an alter number:

Location

2 6 7

Operation

8 14

ALTER

15

Address, Tag, Decrement/Count (

16

N

This form indicates than no deletions are to be made and that the associated pro-

gram modification cards are to be inserted between the symbolic instructions
numbered N and N + 1.

Restrictions:

a) For an ALTER instruction on the first form, N 1 must be less than
or equal to N2; otherwise, the instruction and the symbolic cards
to be inserted are ignored.

b) Remark cards and DETAIL, LIST, TITLE, and UNLIST pseudo-
instructions cannot be deleted by an ALTER. When an ALTER
specifies alter numbers which include one of these in their range,
the ALTER does not affect the remarks cards or listing pseudo--
instructions.

c) An ALTER instruction cannot delete an END card without also

inserting an END card.

d) An ALTER cannot insert an END card without also deleting an END
card. If an ALTER includes an END and does not specify the dele-

tion of an END, the END to be inserted is ignored.

1-35

MC 63-4

e) If a programmer macro-instruction is inserted by an ALTER, the
definition must also be included with the list of modifications.

This does not mean, however, that the definition must be included
with the same ALTER that is to insert the macro-instruction.

Instead, it may be included by a CHANGE or by another ALTER.
The definition may also be placed in front of the group of modifica-
tions and need not be preceded by a Modify and Load pseudo-
instruction.

f) A modification by an ALTER must not overlap a modification either

by another ALTER or by a CHANGE.

Example 1: Assume that the instruction is to be corrected with alter num-
ber 5 in the following listing:

4*

5x ORG START

6 PRCOMM CLA 1, 4 GET PRINTER CONTROL WORD

The instructions necessary to accomplish the corrections are:

Operation

8 14

ALTER
ORG

15

Location

1 2 6 7

Address, Tag, Decrement/Count (

16

5,5 (
3000

After this correction has been incorporated and, assuming that there are

no changes which affect the preceding remarks cards, the listing appears:

4*

5 ORG 3000
6 PRCOMM CLA 1, 4 GET PRINTER CONTROL WORD

Example 2: Assume that in the following listing the instructions with alter
numbers 92 and 93 are to be deleted.

91 NUMBER EQU 24
92 NUMBER EQU 12
93 Z ERO EQU 0
94 TSTBIT PZE STORAGE FOR TEST BIT

1-36

MC 63-4

The required instruction is:

Location Operation

2 6 7 8 14
L

ALTER

15

Address, Tag, Decrement/Count

16

92, 93

After this change is made the listing appears (assuming no modifications affect-

ing preceding instructions) as:

91 NUMBER EQU 24
92 TSTBIT PZ E STORAGE FOR TEST BIT

SYMBOL

The SYMBOL instruction permits the assignment of a location symbol to
a word without requiring the deletion and subsequent insertion of the word.

There is one form of a SYMBOL instruction:

Location Operation Address, Tag, Decrement/Count (

1 2 6 7 8 14 15 16

B SYMBOL A + n

B represents a symbol of from one to six characters which is to become associ-
ated with the word previously assigned the relative location expression A + n

(use relative numbers only).

If SYMBOL is used to associate a location symbol with a word which already
has a location symbol, the new symbol does not replace the old; instead, the two

are made synonymous by an EQU instruction. However, if the symbol in the
location field of the SYMBOL instruction has been previously defined in the pro-

gram, it is defined again with the new value and becomes a doubly-defined
symbol.

If the location field or the variable field of a SYMBOL instruction is blank,

the instruction is ignored.

When a SYMBOL instruction is to assign a symbol to a word in a headed

area (for example, when A is headed) the instruction is written:

Location Operation Address, Tag, Decrement/Count(

1 2 6 7 8 14 15 16

B SYMBOL H$A + n

1-37

MC 63-4

H is the character by which A is headed;B and A + n are as described previously.

Restrictions: If a principal pseudo-operation appears in the range H$A and
H$A+ n, inclusive (or if A is unheaded), the SYMBOLpseudo-instruction above
has no effect on the program.

Example: Assume that a symbol must, for convenience, be assigned the
instruction with alter number 25 in the following listing:

16 CON6 PDX 6, 2
17 +1 LGR 18
18 + 2 ADD 1, 4
19X +3 STO //////
20 + 4 CLA CON6

21 + 5 TQP * + 2
22 + 6 ARS 1
23 + 7 STA STRTWD-2
24 + 8 CLA SWITCH
25 + 9 LLS 0
26 + 10 STO SWITCH

27 + 11 AXT 24, 1
28 + 12 TCOA *
29X + 13 NOP

30X + 14 STZ
31 CLEAR TIX

COMPUTE # INSERT WORDS -
START ADDRESS AND
STORE.
INITIALIZE FOR OCTAL IF TAG
OF PRINT CONTROL IS 4.
IF OUTPUT IS OCTAL STORE
3 IN CONVERSION ADDRESS

DELAY UNTIL CHANNEL AVAILABLE

WKARE A +23,1
WKAREA+24,1 CLEAR WORK AREA FOR
*+1, 1, 1 CONVERSION

Location

1 2 6

Operation

7 8 14

SHIFT SYMBOL

15

J

Address, Tag, Decrement/Count <

16

CON 6+ 9

The symbol instruction above would appear in a subsequent listing (assuming
no other changes) as:

16 CON6 PDX 6, 2
17 + 1 LGR 18

18 + 2 ADD 1, 4
19X +3 SWO //////
20 + 4 CLA CON6

21 +5 TQP *+2
22 + 6 ARS 1

23 + 7 STA STRTWS-2
24 + 8 CLA SWITCH
25 SHIFT LLS 0

COMPUTE # INSERT WORDS -
START ADDRESS AND

STORE.
INITIALIZE FOR OCTAL IF TAG
OF PRINT CONTROL IS 4.

IF OUTPUT IS OCTAL STORE
3 IN CONVERSION ADDRESS

1-38

MC 63-4

26 + 1 STO SWITCH

27 + 2 AXT 24, 1
28 + 3 TCOA *

29X + 4 NQP WKAREA+ 23, 1
30X + 5 STZ WKAREA+ 24, 1
31 CLEAR TIX *+1,1,1

DELAY UNTIL CHANNEL AVAILABLE

CLEAR WORK AREA
FOR CONVERSION

ASSIGN

The ASSIGN pseudo-instruction defines or redefines symbols by insertion
of EQU, SYN or BOOL cards. The form of an ASSIGN instruction is illustrated
below:

Location Operation

1 2 6 7 8 14 15

ASSIGN

Address, Tag, Decrement/Count (

16

where H represents a heading character which may be a blank.

This instruction must be followed by at least one EQU, SYN or BOOL in-
struction to perform one of the following functions:

a) To define new symbols and undefined symbols in a program.

b) To redefine symbols originally defined in a program by EQU, SYN or
BOOL instructions.

An ASSIGN instruction may not be followed immediately by any instruction
other than EQU, SYN, BOOL or SYMBOL. (Note that a SYMBOL following an
ASSIGN does not terminate the effect of the ASSIGN.)

If an ASSIGN instruction specifies a non-blank heading character, all the
symbols used in the following EQU, SYN, and BOOL instructions are headed

by that character. (In addition, the only EQU, SYN, and BOOL instructions
processed are those for which the location symbol has been previously defined
by an EQU, SYN or BOOL card and is not multiply defined. Under these condi-
tions, the new definition replaces the old one.)

When an ASSIGN specifies a blank heading character, the EQU, SYN, and
BOOL instructions are treated as follows:

a) If the symbol in the location field of a SYN, EQU, or BOOL instruc-
tion is undefined or is new to the program, the symbol becomes defined
as usual. The EQU, SYN, or BOOL instruction defining the symbol is

1-39

MC 63-4

inserted at the beginning of the program, preceded only by remarks
included at the beginning of the source program deck.

b) If the symbol in the location field of a SYN, EQU, or BOOL instruction
is defined in the new program by a SYN, EQU, or BOOL and is not

multiply defined, the new definition replaces the old one at the same

point in the program.

c) In all other cases, the symbol in the location field of a SYN, EQU or
BOOL instruction is multiply defined in the program.

When a SYMBOL card follows an ASSIGN, the location symbol is headed by

the heading character of the ASSIGN, if the location symbol is less than six
characters long.

The symbol in the variable field of the SYMBOL is also considered headed
under the same condition.

Example: Assume that the symbols WKAREA and IMAGE are to be equated

in a program. The instructions necessary are:

Location Operation Address, Tag, Decrement/Count

WKAREA

ASSIGN
SYN IMAGE

The listing might then appear as follows (assuming there are no modifica-
tions which affect the four remarks cards at the beginning of the source program):

4 •

5 WKAREA EQU IMAG E
6X ORG START

1.1.4 SOS DE BUGGING MACROS

The principal function of debugging macros is to permit the programmer to

investigate the contents of storage or control panel during the execution of his

program. The debugging macros are used during the development phases of a

program and are removed after debugging has been completed.

The debugging macros can be thought of as extensions of the pseudo-
operations of the SCAT source language and, as such, can be inserted into
the program either while coding or as modifications during Modify and Load.
In the latter case, use of the ALTER pseudo-operation inserts the debugging

macro at the desired location in the program.

1-40

MC 63-4

When the Compiler or Modify and Load interprets a debugging macro, a
TXL branch occurs to the debugging subroutine, the function called for is exe-
cuted, all main program indicators and storage cells are restored, and program
control returns to the main program at the instruction immediately following
the debugging macro.

Through the use of debugging macros, the programmer has the option of
specifying the format of information to be printed and if the data is to be printed
on-line or off-line.

There are several categories of debugging macros: information macros,
which request information output; modal macros, which specify the format of
the output; and conditional macros, which permit output selectivity.

1.1.4.1 Variable Fields

Since the function of debugging macros is varied, the variable field of the
macros is adapted to the function of each. In general, the variable fields con-
tain three types of information: location, format and count:

a)

b)

Location--specifies the proper area of activity for core storage cells
and the index.

Format--indicates the format required for output results of information

macros; specified format of VFD-introduced blocks of storage.

c} Count Specifies:

1) Position of binary point in fixed-point format
2) Number of times a conditional macro is satisfied or unsatisfied

3) Increment of every conditional macro

A typical debugging macro may be:

Location Operation

CORE

L 1 = first location (absolute or symbolic)

L 2 = second location (absolute or symbolic)

Variable Field

L 1, L 2, F, IT1, IT 2

1-41

MC 63-4

F = this field designates the format of the output and may be
coded as follows:

Format

Symbolic instruction

Fixed-point number

Floating-point number

Octal integer

Hollerith BCD information

Variable

Code

S

X

F

O

H

V

IT 1 (or TlI)--Indirect addressing and the tag information for the first
location.

IT 2 (or T2I)--Indirect addressing and the tag information for the second
location.

Information Macros

CORE L1, L 2, F, IT 1, IT2--execution of this macro reads out the

core memory block from the lower location (defined by L 1 and IT1)

to the upper location (defined by L 2 and IT2) in the specified format.

If the effective upper location is zero, the block of core memory from
the lower effective location to the top of core memory is read out. If
the effective upper location is nonzero, it must not be less than the
effective lower location.

b) PANEL (no variable field)--execution of this macro reads out the:

1) Accumulator and MQ--each in both octal and floating-point format.

2) Index Registers 1, 2 and 4--each in both octal and decimal.

3) Sense Indicators--as an octal number whose binary equivalent has
O's for indicators which are off and l's for those which are on.

4) Sense Lights and Sense Switches--each a binary number, with O's
for those which are off or up, and l's for those which are on or

down, respectively.

5) Entry Keys--as an octal number.

1-42

MC 63-4

6) Accumulator Overflow, Divide Check, and Input/Output Check Indi-
cators-each either on or off.

1.1.4.3 Modal Macros

There are three modal macros with variable fields (USE, FORMAT, and

POINT) and three without (ON, OFF, and NUCASE). These macros set modes
for subsequently executed debugging macros.

a) USE A 1, A 2, A 3, . .., An--in large systems particular memory loca-

tions may be occupied by different programs at different times. Conse-
quently, if a programmer wants to read out certain locations to debug
his program, he may get the location symbols of a program other than
his. This situation becomes apparent when the CORE macro is used,
since it scans the lists of ORG's in the Dictionary table, --from the
last entry to the first--until it finds the first program containing the
locations sought. For example, suppose the following system of pro-
grams is compiled using ORG to designate the origin of each program:

ORG 3584 3584--3996 (a)

ORG 4033 4033--5025 (b)

TCD 4650 4420--32000 (c)

ORG 4420 3000--3371 (d)

ORG 3000 30--3520 (e)

ORG 30 4033--8986 (f)

TCD 12785

ORG 4033

END 12785

When an ORG pseudo-instruction occurs after the start of the program
and causes the programs to be compiled with common locations, the
USE macro can be used. In the example, b, c, and f have common
locations as do d and e. If the programmer desired the contents of
location 4054 in program b, the instructions or commands referring
to that location (in symbolic or command format), and only a CORE

pseudo-instruction is used, CORE would: (a) scan the list of ORG's,
starting with the last entry f, (b) find that program f uses location 4054,
and (c) dump the symbols from program f instead of b.

1-43

MC 63-4

DECIMAL

LOCATIONS

1000

2000

3000

4000

5000

6000

7000

LOADING PHASE

I

FIRST EXECUTION

PHASE

iiiiii_ii_iiiiiii!i!i!iiiiiii_iiiiiiiiiii!!i!iiiiiiiiiiiiiii!iiiiiiii_iiiiiiiiiiiiiiiiii__!iiiiiii!i_i!iiiii!iiiiii!ii!_!ii_i_iiiiiiiii

i

SECOND EXECUTION

PHASE

8000

9000

10000

USE reorders the ORG list so that the table is searched in the order

indicated by the symbols in its variable field. The variable field should

contain at least one location symbol (any one) which is unique to the pro-

gram to be dumped. Therefore, if B is a location symbol in program b,

by using USE B, A, CORE would find b 4033-5025 as the last entry and
read out the correct information.

To give a more complete example, suppose that programs a and b are

used initially to call in, from tape, programs c, d, and e which consti-

tute a "first execution phase." After this, program f is brought in from

tape and used with program d during a "second execution phase" (see

illustration). For this example, let A, B, C, . .., F be location sym-

bols associated with programs a through f respectively; let location

symbol F1 = 5020, C1 = 5021 (in programs f and c respectively); let

1-44

MC 63-4

location F2 = 4050; and let location 4054 contain "TRA 5022." Then by
using "USE C, E" prior to any output from the first phase and "USE F,
D" prior to any output from the second phase, "CORE 4054, 4054, S"
given during the first phase will read out "F 2 + 4 TRA C1 + 1". How-

ever, if this CORE macro is given during the second phase, it will read
out "F2 + 4 TRA F1 + 2."

It is essential that the correct span governed by each ORG be recorded
in the Dictionary by associating a symbol with the last location prior
to each ORG, TCD, and END. If this is not done, the symbols of higher
origined programs (higher order core locations} or negative absolute
location numbers (rather than symbollic relative} will be associated
with the desired locations if they lie outside any recorded span.

If the USE macro is not used, or the desired location is outside the

section designated in the USE variable field, the ORG with the highest
numerical core location lower than the numeric address of the desig-
nated program will be assumed to be the effective ORG. If symbols
have been assigned to define the span of each ORG and no USE macro

is used, the following symbols will be attached to all outputs regard-
less of which phas_ is being executed at the time the section is read out.

Decimal Locations Symbols From Program

30--2999 (e)

2000--3583 (d)

3584--4032 (a)

4033--4419 (f)

4420--32000 (c)

Therefore, since programs a, c, and d each lie completely within one
of the above regions, correct symbols would be attached to dumps of
locations within those programs while programs e and f, which are
interrupted by origins of other programs, will not be dumped correctly.
Note that two or more sections origining at the same core location,
without a USE, will cause the symbols of the section physically appear-
ing last in the compilation to be employed. Thus, symbols of program
b could never be seen unless USE is given.

Since USE changes the original order of the Dictionary search and
remains effective _mtil it is nullified by another USE, a "USE E" dur-

ing phase 1 in the example would dump the wrong locations during
phase 2 unless a "USE D" were given. This is true even though pro-
gram d origins at a numerically higher location than program e and

1-45

MC 63-4

b)

e)

d)

f)

would have been read out correctly in phase 2 if no USE had been em-

ployed earlier.

The USE macro is assigned an alter number, appears on a compila-

tion listing, and occupies (2n + 3)10 locations where n is the number of

symbols specified in the variable field.

FORMAT B 1, F 1, B 2, F 2 ,.., Bn, Fn--this macro defines the format

code V. Words which have been compiled by a VFD pseudo-instruction,

or otherwise involve hetrogeneous format, are read out by information

macros which stipulate format code V. Therefore, V must be defined
by prior execution of the correct FORMAT macro. For example, if
locations B through B + 2 contain the octal words 004003040010,
764240000000, and 254560000000, respectively, the macros

FORMAT
CORE

6, O, 15,X, 25,X, 12, H
B, B+2,V

cause the first (leftmost) six bits of location B to be output as an octal
number, the next 15 bits as a fixed-point number, the next 25 bits

(containing to location]3+1) as a fixed-point number, and the next 12
bits as Hollerith information. For Hollerith, the number of bits should

be a multiple of six.

POINT N--this macro defines the position of the binary point within a

word to be read out in fixed-point format.

N is an integer from 0 to 35 which indicates the number of bits which
lie to the left of the binary point.

ON (no variable field)--this macro, prior to execution of OFF or
NUCASE, prints debugging information on-line and writes it on the
BCD output tape for peripheral printing.

OFF (no variable field)--this macro prior to execution of ON, writes
debugging information on the BCD output tape for off-line printing.
This is the normal condition which prevails prior to execution of any
ON macro and after NUCASE.

NUCASE (no variable field)--if a program remains in core memory
while it is repeatedly executed for different cases, as for example when
new data cards are read into a fixed area of core memory, the N-t/CASE
macro is used at the start of each case to reset the POINT and ON

modal macros to normal. It also resets all counts generated by count

type conditional macros to zero and reads out a case identification
number.

1-46

MC 63-4

b)

c)

d)

e)

f)

Conditional Macros

WHEN--when the variable field conditions are satisfied, subsequent
information macros will be executed.

UNLESS--when the variable field conditions are not satisfied, subse-
quent information macros will be executed.

AND--this macro connects conditional and information macros and

extends the power of the WHEN and UNLESS macros. For example,
it may be difficult to specify both upper and lower limits of a given
variable with one WHEN macro. However, if one limit is specified
by a leading WHEN macro, the other limit can be specified by a
following AND macro. When using the AND macro with a WHEN
macro, both conditions must be satisfied.

OR--this macro connects a conditional and an information macro and

extends the power of the WHEN and UNLESS macros. Unlike the AND
macro, the OR macro permits the specification of more than one condi-

tion, any one of which permits the execution of subsequent information
macros.

EVERY N--this macro specified the output increment for successive

passes through a program loop. Its variable field consists of an integer

N which allows a succeeding information macro to be executed the

firsttime and, subsequently, every Nth pass through a program loop.

Variable Fields of Conditional Macros--all conditional macros except
EVERY can use the following general format for their variable fields:

L 1, R, L2, IT1, IT 2

The relation subfield R is coded in one of the following ways:

R Code Meaning Comparison Employed by (DB)

L Less than CAS
E Equals CAS
G Greater than CAS

LL Logically less than LAS

LE Logically equals LAS (redundant to E}
LG Logically greater than LAS

The other subfields involve some additional conventions peculiar to the
c onditional mac ros.

1-47

MC 63-4

The rules governing use of L1, L 2, IT 1 and IT 2 are similar but not

identical to those governing the CORE macro. The following rules
govern the use of terms in the variable field (assume that OP is a
WHEN, OR, UNLESS, or AND macro):

1) Case 1; OP (L1):

(a) When L 1 is zero or blank, the macro is meaningless.

(b) When L 1 is 1 through 7, the contents of XR 1, 2 or 4 or their

result is specified.

(c) When L 1 is greater than 7, a core storage cell is specified.

(NOTE: The above explanation is true if and only if at least one
other subfield in the variable field is expressed. Otherwise, this
form of the macro expresses a count type condition, for example,
WHEN N, where N may be any number. See programming ex-
amples d, e and f.)

2) Case 2; OP L1,R"

R expresses a relationship between L 1 and the term that follows,

e.g., L1,E,L 2 (L 1 equals L2).

(a) All rules of Case i for L 1 apply.

(b) R must be one of the six symbols established for the desired
relationship.

(c) Since L 2 is not expressed, the relationship specified is

between L 1 and zero.

3) Case 3; OP L1, R, L2:

(a) All rules of Case 1 apply to both L 1 and L 2.

(b) R must be one of the accepted six symbols.

4) Case 4; OP L1, R, L2,ITI:

(a) If I is written anywhere in the fourth term, L 1 is indirectly
addressed.

(b) L 1 is not inferred as an XR but is always a core storage loca-

tion, regardless of magnitude.

1-48

MC 63-4

5)

(c) If L 1 is blank, it is regarded as a tagged address of zero.

Case 5; OP, L 1, R, L 2, IT1, IT2:

All rules governing L 1 apply to both L 1 and L 2 using IT 2 as address

modification specification for L 2.

Programming Examples of Debugging Macros

A STO X
CORE

B CLA Y

After execution of STO X, all of core storage is read out on BCD tape
in addition to the panel information and, immediately following, control
is returned to CLAY.

b) Given: L50 is the location of 50

WHEN 4, G, L50
CORE

If the contents of XR4 is equal to or less than L50, core memory is not

read out; only when the contents of XR4 is greater than 50 is core
memory read out.

c) Given: Location 4 contains PZE 888; XR 2 equals 1

UNLESS 4, L, 2, I
OFF

If the contents of LOC 888 is greater than zero, the subsequent output
is off-line.

d) WHEN 8
CORE 800, 800, X

e)

(count type condition)

If this pair is inserted in a program loop for the first seven executions
of WHEN, CORE is inoperative; following the eighth execution of WHEN,
CORE becomes operative.

UNLESS 8
POINT 18

CORE 800, 800, X

(count type condition)

1-49

MC 63-4

If this sequence has been inserted in a program, the number of loca-

tion 800 is a fixed-point integer, properly read out until eight outputs
have occurred. Thereafter, the sequence is inoperative.

f) WHEN 3
UNLESS 3

CORE A, A

(count type condition)
(count type condition)

If this sequence has been inserted in a program loop, the CORE macro
becomes inoperative on the first and second passes, memory is read

out on the third, fourth and fifth passes, and all subsequent passes are

inoperative.

g) Given: X is to be read out when it lies between 50 and 70. 50,X and
70 are located at L50, LX and L70, respectively.

The macro program to give proper output can be written:

WHEN L50, L, LX
AND LX,L, L70

CORE LX, LX,X

h) Using the given locations in example "g" to output X when it is less than
50 or greater than 70, the following macro is used:

i)

UNLESS L50, L, LX
AND LX, L, L70
CORE LX, LX, X

Given: X is to be read out when X 2 _ 100.X, 10 and -10 are located at

LX, L10 and LM10, respectively. The coding is:

WHEN LX, L, LM10

OR LX,G, L10
CORE LX, LX,X

J) Given: The first 50 non-negative values of X in a loop are to be read
out. The coding is:

UNLESS LX, L, 0
OR 50

CORE LX, LX,X
(count type condition)

Here the UNLESS macro is associated with a count of outputs.

k) Given: X,Y and Z are located at LX, LY and LZ, respectively. X is
to be read out the first 50 times any of the following three conditions
are satisfied:

1-50

X exceeds Y and XR 4
X exceeds XR2

X exceeds Z and XR 4

MC 63-4

The coding is:

WHEN LX, G, LY
OR LX, G, LZ
AND LX, G, 4
OR LX, G, 2
UNLESS 50

CORE LX, LX,X

(For a detailed explanation of the associative and commutative laws

governing this type of sequence see page 29, Part 3, of the Share 709
SOS Manual.)

1.1.5 SOS MONITOR

The Monitor is a supervisory program written to control the processing of
job decks through the computer. A job deck consists of a program deck and its
associated control cards which designate the operation to be performed.

The

a)

b)

c)

d)

e)

control cards direct the Monitor to perform any or all of the following:

Compile a program (listing and squoze deck as output).

Modify and load a squoze deck for execution.

Modify and punch a squoze deck to punch a clean (no modifications)
squoze deck.

Produce a listing of a squoze deck with or without modifications.

Permit the use of debugging macros.

1.1.5.1 System Operation: Input Deck

When using the SOS system for an assembly, a debugging run, or an execu-
tion run, the first card of each job deck is a JOB card. The alphabetic charac-
ters J, O, and B are punched in columns 8-10 of the card. Also punched in
columns 16-27 of the card are the name of the program and the programmer's
name or initials to enable the operator to separate and return the results.

Immediately following the JOB card, a DATE card may be inserted. (DATE
punched in columns 8-11 and six Hollerith digits in columns 16-21 for the month -
day - year.) The DATE card will override a date entered in the MQ-keys on the
console. The date entered either via the keys or a DATE card will appear on

1-51

MC 63-4

every page of a compilation or punch-squoze listing. It will also appear on the
first page of the output for all types of jobs.

Cards with columns 8-13 blank, placed between the JOB and succeeding
cards, will be printed both on-line and off-line. The variable field of these
cards might contain instructions to the operator or other remarks.

The input deck consists of any sequence of job decks, followed by a card
punched PAUSE in columns 8-12. Job decks include the following possible
categories:

a) Compilation Job Decks

1) Card punched JOB in columns 8-10 with the name of the program
and the programmer (or his initials) in columns 16-27. Columns
11-15 must be blank.

2) Card punched CPL in columns 8-10 for column binary, or CPLRB
in columns 8-12 for row binary output.

3) At least two remark cards, one with the name of the program and
one with the name of the programmer.

4) Symbolic program deck from ORG to END card.

5) Blank card

6) PAUSE card

Non-modified, column or row binary squoze decks may be inserted in
the symbolic deck if preceded immediately by a SQZ symbolic card.
For column binary, SQZ is punched in columns 8-10; for row binary,
SQZbRB is punched in columns 8-13. The squoze decks incorporated
in the symbolic deck must be complete.

b) LS--List Job Deck

1) JOB card (as in a, 1 above)

2) Cards punched LS in columns 8 and 9

3) Squoze deck without modification

4) Blank card

5) PAUSE card

1-52

MC 63-4

c)

1}

2}

3}

4}

5)

6)

7)

Execution Job Deck

JOB card

Card punched LG in columns 8 and 9

Squoze deck*

Blank card

Any number of data sentence decks**

Card punched GO in columns 8 and 9

PAUSE card

The card sequence with a squoze deck is of major importance; manual
rearranging should be avoided. When no modification is desired, there
is no change required in the squoze deck; it should be fed into the card
reader exactly as produced in the card punch.

d) List Squoze Deck

This job deck gives a dump-type listing of the squoze deck with modi-
fications. The listing does not contain comments. It looks like a dump
using the CORE macro with the symbolic format specified.

1) JOB card

2) Card punched LG in columns 8 and 9

* If modifications are to be added, they are to be inserted as shown below:

Original Squoze

Miscellaneous cards preceding blank

Blank card

Remainder of squoze deck

Modification Deck

1. Card punched MOD in columns 8-10
2. Modification cards

3. Cardpunched ENDMOD in columns 8-13

** Data sentence decks are composed as follows:

1. Card punched DS1 in columns 8-10
2. Data sentence decks
3. Blank card

Data sentence decks may be used to provide for input data during the debugging
of programs. Additional information concerning DS1 cards is found in subsec-
tion 1.1.5.3.

1-53

MC 63-4

e)

f)

g)

h)

i)

NOTE:

1-54

3) Squoze deck with modifications

4) Blank card

5) Card punched LIST in columns 8-11

6) PAUSE card

This type of deck must be used if there are modifications.

PS--Punch New Squoze Deck

1) JOB card

2) Card punched PS in columns 8 and 9

3) Squoze deck with modifications

4) Blank card

5) PAUSE card

PA--Punch Absolute Binary

The following job deck causes the squoze deck to be decoded and abso-
lute binary cards to be punched according to SOS format.

1) JOB card

2) Cards punched PA in columns 8 and 9

3) Squoze deck with or without modifications

4) Blank card

5) PAUSE card

Compile and Execute

Punch New Squoze Deck and Execute

List Squoze and Execute Deck

If the input squoze deck is in row binary for an LG, PA, PS or LS run,
"RB" must be punched in columns 16-17 of the LG, PA, PS or LS card.
(Leave these columns blank for a columnar binary input deck.) If the
output deck for a PS or PA run is to be row binary, "RB" must be
punched in columns 18-19 of the PS or PA card. (Leave columns blank

for a columnar binary output deck.)

MC 63-4

1.1.5.2 Effect of Control Card

Control Card

JOB

CPLRB

CPL

PS

LS

LG

System Action Caused

Initializes the Monitor and causes
it to read next card

Calls in the Compiler and trans-
fers control to the Compiler.

The Compiler compiles the pro-
gram, gives an error list and
punches a squoze deck. Control
is then transferred to the Moni-

tor, which reads in Modify and
Load to obtain a Modify and

Load error list and a program

Visible Results

Prints JOB and remarks

from JOB card variable
field on-line

Prints CPLRB on-line
and off-line. Pass SYSTAP

to C1 and C2. When C2 i_

in, the system tape re-
winds. Prints error list

on-line or off-line; punches
squoze on-line or off-line

in row binary

listing

Same as for CPLRB

Calls in Modify and Load,
punches a new squoze deck

and gives a program listing.
May be used with or without
modifications. MOD and END
MOD cards must be used even

Same as for CPLRB, ex-

cept the squoze deck is
punched in column binary

Prints PS on-line and off-

line. Punches new squoze
on-line or off-line. Gives

new program listing on-
line or off-line

if no modifications are present

Calls in Modify and Load and

gives a listing. No modifica-
tions are permitted

Calls in Modify and Load,
transfers control to Modify
and Load, decodes squoze and

writes absolute program on B1.
At end of loading, it transfers
control to Monitor to read next

control card. Modifications are

permitted

Prints LS on-line and off-

line. Gives program list-
ing on-line or off-line

Prints LG on-line and off-
line

1-55

MC 63-4

Control Card System Action Caused Visible Results

PA

GO

LIST

PAUSE

Calls in Modifyand Load, decodes
squoze and writes absolute pro-
gram on B1; then punches abso-
lute binary. Mods are permitted

Reads SNAP (the DB1 program)
into core memory below 56708;
clears memory from 56708 to
0; loads program from B1 until
a transfer card record is read;
then transfers control to object
card program

Reads SNAP (DB1) into core

memory below 56708; clears
memory from 56708 to 0; loads
program from B1 until a trans-
fer card record is read; ex-

ecutes core dump from 56708
to 0; then transfers control to
Monitor to read next control
card

Halts Monitor and allows the pro-

gram to continue without rewind-
ing all tapes. Press START to
read next control card

Prints PA on-line and off-
line. Punches absolute

Prints GO on-line and off-
line

Prints LIST on-line and
off-line

Prints PAUSE on-line and
off-line

The Mercury version of SOS does not permit use of another SOS control card,
the control card STOP, which in the standard SOS system rewinds all system
tapes and halts the computer.

1-56

MC 63-4

1.1.5.3 Specifications of the Data Sentence Program

A data sentence is defined to include an absolute decimal location giving the
initial loading address; this is terminated by an equal sign (=) which is followed
by the data. Consecutive words of data are separated by commas, and the end
of the sentence is indicated by the marker (*); for example, 7083 = -52,32.
1E5,39.1B6* is a data sentence which loads three numbers--integer, floating
and fixed numbers--into location 7083 and the two locations following.

The normal sentence data is floating-point data, fixed-point data and deci-
mal integers which are expressed according to regular SCAT rules and which
may follow each other arbitrarily.

To introduce octal data, the letter O is punched with the octal numbers en-

closed within parentheses; for example, 7083 = -52,32. 1E5, 39. 0(-7, 7263),
509E20". This sentence loads three decimals, two octals, and one decimal
beginning at 7083.

The remaining rules of syntax are:

a) The card is used from column 1 to column 72; punching is continuous.

b) A sentence may start in any card column and extend to the end-of-

sentence marker. It may extend beyond a card; more than one sentence
may appear on a card.

c) Punching on a card must end with a comma or with an end-of-sentence

marker. If a blank then follows, the remainder of the card is ignored.

d) The last sentence of a data block must end with a ($) instead of (*) and
should be followed by a symbolic expression. Transfer to this location
is made after loading the data block; for example:

Card 1-A = 7192 = 5.1E3,60.12,301.2.
Card 2-B = 7195 = 70.1, O(-77), 70, 1B75C

These two cards comprise a data block which loads as specified and
transfers to location C.

Two types of errors may occur during conversion:

a) Overflow/Underflow--normal zero is stored; conversion of next field
continues.

b) Mispunch--when an illegal character is encountered, normal zero is
stored and processing is continued for the next field.

1-57

MC 63--4

Error messages indicating column number and record are given.

If either TCD's or DSI's are used, the program must anticipate the logical
record arrangement and call program and data blocks after logical record 1 from
tape into core memory by use of calling sequences of the form:

TSX 82, 4

PZE A,, B
Bad data return

A is the number of the desired logical record (program file). A = 0 means to
read the logical record with the number that is one greater than the last one
read. A nonzero means B is the location to which the Monitor returns after

reading. B = 0 causes return to the location specified by the TCD, END, or
$ card. (Each TCD and END card terminates one program file. The first such
file is number 1.)

1-58

MC 63-4

1.2 SOS MODIFIED FOR MERCURY

1.2.1 MERCURY CHANGES TO SOS

1.2.1.1 Monitor

The Mercury SOS System tape contains the "32K New York IBMonitor,"
with the following changes:

a) The Mercury SOS Monitor initializes core storage locations above

300010 to zeroes at the start of each job. Share SOS initializes by

inserting an STR instruction (operation code: -10008) in each location
above 300010.

b) For floating-point overflow and underflow, SOS Mercury prints off-line
the location of the instruction which causes the overflow or underflow.

SOS Mercury overflow sets bits 1 through 35 of the responsible register
(AC or MQ) to l's, but the sign remains unchanged and the program con-
tinues. Share dumps when an overflow occurs. For both Share and Mer-

cury, underflow causes the responsible register (AC or MQ) to be cleared,
i. e., set to + 0, and the program continues.

c) A program may be terminated by transferring to SYSTEM or SYSERR
without defining these symbols in the program. This obviates the
necessity of returning to the SOS Monitor with a TRA 10 or 14, 110 or
114, or any other absolute location subject to change. SYSTEM gets
the snaps taken by the job and then initializes for the next job. SYSERR
gives a symbolic dump (in the format from the compilation listing) from
SYSORG to the top of memory and then transfers to SYSTEM. A third
symbol, SYSTRA, which immediately initializes for the next job, can be
used.

d) Three other SOS system symbols are available; these are primarily
used for interjob communication in the dual-compilation scheme. After
a job assumes control at execution time, it can change the contents of
these locations to accomplish a change in the way SOS processes the
next job.

Normal

Symbol Octal Contents Purpose

SYSORG 5670 The origin value assigned by SOS to
each program file unless the program
specifies another by means of an
ORG card. Also, the starting loca-
tion of all core dumps taken by the
system

1-59

MC 63-4

e)

0

g)

Normal

Symbol Octal Contents Purpose

SYSMIT 2201 Mediary Input Tape. Contains the

program in binary and various SOS
information such as the dictionary
of program symbols

SYSMOT 2202 Mediary Output Tape. Contains the
debugging information taken during
execution, in binary

The table of names and numbers of the 21 subroutines on the Mercury
SOS Library Tape appears in the Mercury SOS Monitor. The Share
Monitor provides for these items but does not include them since they
are functions of each installation.

An on-line punching operation (CPL, PS, PA) will cause a JOB card to
be punched on-line ahead of the deck. The off-line punching operations
(CPL, PS, or PA), with SSW#6 up, will not punch a JOB card ahead of
the deck on SYSPPT.

To permit the above changes to be made without affecting the corre-

spondence of alter numbers and locations between the Mercury and
Share systems, some instructions have been moved and some remarks
inserted.

h) The PAUSE halt is 1738.

i) Additional SOS symbols available in Monitor are:

Program Symbol Comments

SYS2PR Prints message on-line and on A2.
TSX SYS2PR

PZE A,, B

where A is the first location of the BCI message
and B is the number of words in the message
(maximum 12 for on-line)

SYSBAT Decrement receives C tape drive number for a
batched copy of B1

SYSCPL Area in monitor not used during LG

SYSFGO Area modified to stack edited dictionaries

SYSFIL Transfer location to space to dictionary on B1.

1-60

MC 63-4

Program Symbol

SYSFLO

SYSPRM

SYSPRT

SYSTLD

SYSXCD

6610

6710

7010

7110

7210

Comments

(See commentary on floating origin)

Subroutine to reset memory
TSX SYSPRM, 4
PZE A, , B
Reset word

Memory from A to B inclusive is reset to con-
tents of Reset word.

Subroutine to print a line or write a BCD record
on A2.

TSX SYSPRT, 4
PFX A,,B
Redundancy return
EOT Return

PFX is PZE for A2, MZE for printer. A is the
location of the BCD characters. B is the number

of words (maximum of 12 for printer)

SOS Tape Loader (A1)
TSX SYSTLD, 4
PFX A,,T

If PFX is PZE, tape is loaded; MZE, tape is
positioned in front of first record of requested
file.

A is communication cell containing call number
T is the return address. If T is zero, return

is specified by loaded file

Continues SOS without picking up snaps

Contains SOS tape number (normally 12018)

Contains Library tape number (normally 12048)

Contains input tape number (normally 12038)

Contains output tape number (normally 12028)

Contains squoze or binary tape number (nor-

mally 12058).

1-61

MC 63-4

Program Symbol

7610

8210

Comments

Redundancy correction routine. Attempts to
write 25 times or read 10 times before it stops
running
TSX 76,4
PFX A,,D
Error return

A is the address of first I/O command in string.
D is the unit (such as 1206 or 1226 for A6 in
BCD or binary, respectively)
XR2 contains the record count

PFX is PON for read, PTW for write end of
file, PTH for write

Mediary input tape (B1 Job Tape) loader
TSX 82,4
PZE A, , B
Bad data return

where A is file call number; if zero, next file is
loaded

B is normal return address; if zero, tape
specifies return

1.2. L2

a)

b)

c)

d)

Compiler

Provisions were made to incorporate programmer macros into the

Mercury SOS as system macros (see subsection 1.2.3). Core storage
was made available for these system macros by removing certain
instructions not used in Mercury (the instructions referring to data
channels E, F, G, and H, the magnetic drum, and the cathode ray
tube). The Mercury SOS tape does not presently include the Mercury
programmer macros.

SCAT was changed to recognize the machine instruction PSLF (present
sense lines, channel F), which activates the subchannels of the Data
Communications Channel (DCC).

The maximum dictionary size was reduced from 8192 entries in the

Share system to 8000 for Mercury.

The following 65K instructions have been added: TIA, TIB, SEA, SEB,
IFT, and EFT.

e) 7094 instructions have been added.

1-62

MC 63-4

f)

g)

h)

The highest location from the previous job is passed on to the following
job. The first job must be preceded by a FIELD card. The highest
location may be picked up in the following job by placing a BSS card
after a TCD card with no intervening ORG card. The BSS should have
a location symbol for reference purposes.

All 6-letter symbols beginning with SYS are passed on to successive
jobs when the first job has been preceded by a FIELD card. A maxi-

mum of 600 such symbols may be passed on. If a passed-on symbol is
used as a location in a job, the location symbol overrides the passed-
on symbol for that job only.

ORG, BSS, BES, EQU, and SYN can select the highest value of several
choices. For example, ORG A=B=C. If B is the highest value, the
ORG occurs at B. Address fields may be complex, such as A+B=C/D=
D+F. (With these instructions, the equal sign is part of the format and
does not denote equality.)

b)

c)

d)

e)

Modify and Load

The PSLF instruction was added to the decode and list files (see b
under "Compiler."

Deletions similar to those in Compiler were made from SOS to reserve
storage for additional Mercury programmer macros.

The decode and lister files were also altered to compile squoze cards

using SQZ or SQZ RB. SQZ and LBR have a better chance of succeeding
if they occur near the start of the program.

The Modify and Load supervisory controller and symbol assigner files
were altered to use certain symbols internal to SOS. These are men-
tioned under 1.2.1.1, items c and d.

LBR cards may be altered out of a program at Modify and Load time;
however, there is presently no way to alter in a routine from the
Library tape.

f) The maximum number of TCD cards acceptable has been raised from
50 to 500.

g)

h)

A card of the form A BSS A is now acceptable.

Modifications were made which enable SOS to assign origins other than
SYSORG to program files. A TCD followed by a BSS 1 (with no
intervening symbols or 0RG cards) will cause the origin of the BSS to

1-63

MC 63-4

i)

J)

k)

1)

be assigned from a table starting at location SYSFLO in Monitor. The

maximum number of these origins now available is 28. Additional ones
would be assigned from SYSORG. The table must be initialized by one
job with desired origins to be assigned in succeeding jobs. The table
would appear as:

PZE A,, B
PZE C, , D
PZE E

if five starting locations were desired by this method. This feature is
primarily applicable to the dual-compilation scheme used for the Mer-

cury Programming System. However, the operator should recall SOS
from tape after using this feature.

The following 65K instructions have been added: TIA, TIB, SEA, SEB,
IFT, and EFT.

7094 instructions have been added.

Highest location pass-on, symbol pass-on, and highest value selected
in principal pseudo-ops have been incorporated. See subsection 1.2.1.2
t), g), and h) for a discussion of these features.)

If a symbol occurs after a wrap around, the new SOS tape will announce
"Core Wrap Around" once for each instance of wrap around.

b)

c)

d)

e)

Debug

The following 65K instructions have been added: TIA, TIB, SEA, SEB,
IFT, and EFT.

7094 instructions have been added.

A FIELD card prevents the SNAP routine from being loaded, therefore,
the programmer may not use CORE, PANEL, etc., unless he makes
provisions to load SNAP.

Snaps may be taken in an intermixed fashion from different jobs. Pre-
edited dictionaries must be on A10 and the first pre-edited dictionary
must be loaded before calling SNAPTRAN. B2 tagging records identify
which dictionary is to be used. The tagging record consists of one
word in the following format: PZE JOB#, ,21.

If the program has left multiple-tag modes, the panels will be all of
seven index registers.

1-64

MC 63-4

1.2.1.5 Input/Output

There are no deviations from the Share Input/Output section.

1.2.2 MERCURY SOS TAPE FEATURES

The following paragraphs present a partial listing of the features of the
Mercury SOS tape:

a) The JOB card is reproduced at the start of all decks punched during
CPL, PS and PA runs. If the no-punch option is exercised, the JOB

card is represented on tape as one binary record. (A 1 appears in
column 1 to eject paper on the on-line printer for each new job.) The
JOB card should be removed before sequencing the deck but may be
used as the first card in the deck setup for future execution runs.

b) LBR cards need not appear in the symbolic deck in the same order as
the routines appear on the Library tape.

c) The date may be inserted into a CPL or PS listing using the control
card, DATE, and the month/day/year in columns 16-21, as "bbbbbbb
DATE bbbb 121560." The date can also be entered manually on the
console keys in the same manner; however, the DATE card overrules
the keys. The DATE card should immediately follow the JOB card.

d) The "rescue" operation saves any debug macro output which may have
been written on B2 before a program came to an unexpected stop or
loop. The rescue operation procedures are as follows:

1) Rewind A1

2) Depress sense switch #4

3) Press LOAD TAPE

A memory dump from 308410 to 3276710 is taken first. (To skip the

dump, press CLEAR before pressing LOAD TAPE.) TRYING TO
RECOVER SNAPS AFTER PROGRAM SCRAMBLED MEMORY is

printed on-line.

e) Column binary input and output (squoze or absolute) cards are the
normal modes of operation and therefore may be processed on-line.
Row binary squoze cards must be read on-line, and the appropriate
control card must have RB in columns 16 and 17. The control card,

CPLRB, must be used for row binary squoze output from a compila-
tion. For row binary (squoze or absolute) output from an execution,

1-65

MC 63-4

0

RB must be in columns 18 and 19 of the appropriate control card (LG,
PA, PS or LS).

A CORE macro consolidates large groups of consecutive identical words;
the message, WORDS OF OMITTED, appears instead of the

individual locations (formerly this was true only for consecutive zeroes).
Symbols attached to the omitted locations are not used.

g) The EJECT macro is inoperative at the top of a page unless two or
more EJECT's occur in succession.

h)

i)

J)

k)

I)

m)

Symbolic cards can be used to provide comments both on-and off-line
if columns 8-13 are blank and the cards are inserted between the JOB

card_nd the next control card. By this means, a message can be
given to the operator without using machine instructions.

n)

One computer run may combine a CPL and GO, or PS and GO, or LS
and GO job. The deck setup for this is:

1) JOB card

2) DATE and comments cards (both optional)

3) CPL, PS or LS control card

4) Symbolic or squoze deck

5) Blank card

6) GO card

7) PAUSE card

The variable fields of DETAIL and SPACE are interpreted.

A tape bad-spot routine has been added to all sections of SOS and should
reduce tape failures.

A squoze deck to be listed using LS may now contain mods (except
column binary on-line). The new date appears on the listing, and the
job is treated as PS.

A PS run with a squoze deck without mods may be made. The MOD and
ENDMOD cards may be omitted, but an error message is printed and
the job is treated as LS.

Two or more tapes may be used as input to the compiler for one job.
This splitting is accomplished by placing an ENDTAP card on each

1-66

MC 63-4

o)

incomplete tape except the last. When encountered by the compiler,
the ENDTAP card causes the following message to be printed on-line:
END OF SYSPIT. MOUNT THE NEXT SYSPIT AND PRESS START.

Commentary at the start of the program can now be deleted by using
ERASE. ERASE (MACRO) only removes the macro skeleton from a
punched squoze deck. It has no effect on the macro expansions in the
program.

i.2.3 MERCURY SOS LIMITATIONS

The following is a list of the Mercury SOS Systems' limitations.

a) A program should not origin below 300010 and cannot origin at zero.

b) The following insertions are inoperative at Modify and Load time:
DUP, LBR, SQZ, EXEMPT, Extended Range Instructions programmer
macros unless they are redefined, and ETC after a VFD. HEAD may
be altered in and out on non-PS runs (as well as PS runs), except
column binary on-line. This requires an A5 and makes a listing since
it causes a PS operation. All 7094 instructions may be inserted ex-
cept indirectly addressed I/O commands. (For example, IORP* A,, B
would have to be altered in as IORP A,4, B. The resulting SOS error
indication should be ignored.)

c) SYN, EQU, or BOOL is omitted if the location symbol or variable field
is missing.

d) Principal pseudo-operations* may not be modified with, nor included in,
the range of a CHANGE.

e) If a BSS or BES pseudo-operation has both an associated symbol and a
debugging format code, the latter is attached to the symbol associated
with the BSS or BES. If either a BSS or BES has no associated symbol,
the debugging format code, if present, is ignored. If a BSS or BES
has an associated symbol but no debugging format code, the code is

attached to the symbol, becomes the prevailing code for compilation
and will be octal for Modify and Load.

f) Depressing sense switch 3 causes the Modify and Load and Compiler
errors to be printed on-line. However, during GO time, portions of

the debug macro output may be selected for on-line printing by toggling
sense switch 3.

g) Any insertion which is attempted in the middle or at the end of a block
of remarks cards or listing pseudo-operations is always made before
the remarks or pseudo-operations.

1-67

MC 63-4

h)

i)

J)

k)

1)

m)

If an MSE or PSE with a blank variable field is inserted, it is listed
incorrectly.

If an illegal subfield exists in the variable field of a DEC, a zero is
inserted for that subfield and an error message is printed, but subse-
quent fields may be dropped or improperly converted.

Principal pseudo-operations* cannot occur within the range of a DUP.

There is a limit to the number of modifications which may be made for
an execution run. The number of permissible modifications is a func-
tion of the core size, length of program, the type of modification, and
the number and length of insertions; where "mods" is the sum of
ALTERWs, CHANGErs, ERASErs, ASSIGN's, dictionary, introduction,
and footnote entries. Thus, there is no practical reason for deter-
mining the numerical value of this limit. If the phrase MODIFICA-
TIONS EXCEED LIMITS appears after the ENDMOD card, the number
of changes should be condensed or a recompilation made. The SUMARY
program is provided to determine the nearness of the modification limit:
and to advise on the recompilation schedule.

A VFD with its ETC's may not specify more than 66 subfields or gen-
erate more than 50 words.

Squoze decks (tapes) prepared from CPL or PS runs using a current
SOS tape cannot be executed using an earlier version of the SOS tape.

n) The limitations of programmer macros are:

1) The name of a macro may not contain any numeric characters.

2) The macro definition does not appear in the Compiler listing;
however, using a DETAIL prior to calling the macro causes all
the generated instructions to be listed.

3) The macros are not available at Modify and Load time. To insert
a macro, it must be redefined in the modification packet immedi-
ately following the MOD card and before any ALTER's or
CHANGE's.

4) The elements in the variable field of macros appearing within pro-
grammer macros are prefixed by a plus sign.

*BES, BOOL, BSS, END, EQU, HEAD, ORG, SYN, and TCD are the principal
pseudo-operations.

1-68

MC 63-4

5} ERASE QXX (where QXX is a macro name} is not operative.

6) No programmer macro may contain an operation of the form A$B
(where A is a parameter of the macro}.

7} The maximum number of programmer macros which can be defined
by Modify and Load is 20.

8} A single macro definition may not employ more than 32 parameters.

i.2.4 INCORPORATION OF MERCURY PROGRAMMER MACROS INTO SOS

AS SYSTEM MACROS

The Mercury SOS System tape does not include any of the programmer
macros of the Mercury Programming System. The definition of each macro
must, therefore, be inserted as modifications during each execution run if any
CHANGE or ALTER inserts a use of that macro. However, it is possible to
incorporate these macros into SOS so they can be available (as are CORE and
PANEL) without redefinition at Modify and Load time.

SOS macros may be defined either by skeletons* or generators. ** The
definition of a macro by the skeleton is preferable to definition by a generator,
since the former requires less coding and is the method used to define program-
mer macros. A generator would have to be used for macros which do not adhere

to the restrictions placed on programmer macros (for example, a macro such
as BEGIN, which does not always generate the same number of instructions}.
The discussion which follows is confined to macros defined by skeletons. Addi-

tional information is available through SHARE.

*The "skeleton" is a series of octal data words which describes the generated
instructions according to a formula.

**A macro "generator" is a program added to the C1 and MO files of SOS to pro-
duce, in BCD, the instructions of a macro. When the generator receives con-

trol, the identity of the macro has been determined and the starting column
and number of characters in the parameters have been tabulated. After pro-

ducing each instruction, the generator relinquishes control to permit encoding
of the instruction as if it were symbolic input. When control returns after the
processing of the last generated instruction, the generator exits by a trans-
fer to the basic routine to resume processing symbolic input.

1-69

MC 63-4

The first step in incorporating a programmer macro is to compile the
symbolic definition of the macro. The deck for this computer pass might con-
sist of the following cards:

QXSUM

B

START

D

JOB

CPLRB

MACRO A, B, C
CLA A
ADD 3004
C 3010
END

QXSUM D, E, STO
TRA SYSERR
DEC 1

END START
blank card
PAUSE

The resulting row binary squoze deck includes a macro name table as the
card preceding the blank card, and the macro skeleton table as the card(s) im-
mediately following the blank card within the squoze deck. For each macro that
is compiled (one, in the above example), the macro name table contains two
adjacent words of information:

Word 1--NAME00: the macro name, left-justified, to provide six
characters.

Word 2--Address: relative position of the first word of the skeleton in the

skeleton table (zero for the first skeleton).

Word 2--Decrement: number of words in the skeleton.

For each macro to be inserted, three modifications to the SCAT1 or C1
file of the SOS Compiler and three modifications to the MLMOD1 or MO file of
SOS Modify and Load are required:

a) BCI 1, NAME00, where NAME consists of one to six alphabetical
characters, should be inserted in the tables whose origins are at
OPTBL in C1 and TOPCO + 1 in MO.

b) An information word, whose structure is given below, should be in-
serted in the tables which origin at FLAG in C1 and TOPAN + 1 in
MO.

1-70

MC 63-4

C1 Information Word
Bits Use

S, 5-11, 20
1, 3, 4
2, 19
12-17

18

21-35

Available to the macro generator
0
1

Minimum number of parameters
which may be specified
0--macro defined by skeleton
1--macro defined by generator
Location of skeleton or generator

Bits

MO Information Word

Use

S-5

6-15, 17, 20
16
19
18

21-35

011 001

Available to the macro generator
0

1

0--macro defined by skeleton
1--macro defined by generator
Location of generator or skeleton

c) Octal data words (using the pseudo-operation, OCT, and the data from
the skeletc_ table in the squoze deck obtained above) for the macro
skeleton should be inserted after the remark MACRO SKELETONS FOR

SYSTEM MACROS in C1 and MO (at alter numbers 85438 and 73218,

respectively). The first octal word should be given the location symbol
specified in bits 21-35 of the information word described in b) above.

(NOTE: Reference to listings without modifications of the C1 and MO files

should be made to obtain the alter numbers for the above insertions.)

With modifications, the C1 and MO squoze decks must be punched absolute

to obtain absolute (row) binary decks using a control card with the following
format:

Column Punch

8-9 PA

18-19 RB

A punch squoze run is necessary to obtain a listing with modifications. The
new absolute binary decks are used to update the SOS System tape using the
IBWR2 program and the appropriate Hollerith cards preceding each binary deck.

1-71

MC 63-4

1.2.5 COMPONENTSOF THE MERCURY PROGRAMMING SYSTEM

The complete Mercury SOS Progrsmmin_ System consists of:

a) The Mercury SOS System tape which incorporates modifications from
New York through ISHARE Distribution Number 32 and various other

changes. (Individual files on this tape are listed in Table 1-1. Other
features of the tape are discussed in subsection 1.2.2.)

b) The Mercury Library and Regular Library tapes.

c) The New York SOS System tape which includes all sections exactly as

they have come from SHARE (through Distribution Number 32).

d) Two decks, each consisting of approximately 3000 absolute row binary
cards. One deck is used to write the Mercury System tape and the
other is used for the SHARE System tape.

e) Each Bystem (Mercury and SHARE) in column binary squoze cards with
appropriate modifications. Each deck contains approximately 10,000
squoze cards.

f) A folder of listings for the sections to the SOS System.

1.2.6 SHARE SYSTEM TAPE WRITER PROGRAM (IBWR1)

IBWR1 is a self-loading program that accepts the SOS master cards in IBM
709/7094 binary format and produces an SOS System tape (A1).

1.2.6.1 Input Requirements

Input to IBWR1 consists of symbolic control cards and the binary programs
which comprise the SOS System. The cards are described in the order in which
they must be supplied as input:

a) Sequence Cards (SEQ punched in columns 8-10)--contain the system
file identification in columns 16-21. The order of these sequence cards
specifies the order in which the corresponding system files are to be
written on the SOS System tape--these cards must be arranged in the
exact order intended for the files on the tape, and SOS Monitor (file
identification, MON) must precede all other files on the SOS System
tape.

b) Program Deck (name card and program)--each name card is a preface
for, and must precede, the program it represents. The system file
identification (from columns 16-21 of the sequence card) is punched in

1-72

MC 63-4

File
No.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

TABLE 1-1.

File
Name

MN

M1

MO

M3

M7

M7

M7

M7

M7

M4

M5

M6

M8

M9

D1

D3

D2

C1

C2

DA

IN

OT

TM

INDIVIDUAL FILES, MERCURY SOS SYSTEM TAPE

Sequence
Name

MON

MLSUPR

MLMOD1

MLMOD2

MLPCH1

MLPCH2

MLPCH3

MLPCH4

MLPCH5

MLASGN

MLDCOD

MLDERP

MLLIST

MLEROR

SNP1

DDE

SNP2

SCAT1

SCAT2

DS1

INT RAN

OUTRAN

TM

Section

Tape Loader

Monitor

Modify & Load

Debug

Compiler

Input/Output

EOT File

Inclusive
Decimal Locations

in Core Storage

32767-1, 8, 10-1796

28672-29573

22978-31678

27617-31546

29937-31616
31667-32182

28672-31401

31117-31626

30067-31571

30998-32198

28672-29790

28160-31564

28672-29740

5400-10800

28672-29526

1798-2961

2000-2408
32618-32688

2000-5992

2000-16752
24770-25295

2000-11998

9000.10449

3000-8147

10500-14505

14500-15108

Number of
Locations

Used

1791

902

8701

3930

2196

2731

510

1505

1211

1119

3405

1069

5401

855

1164

480

3993

15279+ BSS

9999+ CI BSS

1450

5148

4006

609

Number
of

Records

I

12

19

35

15

10

10

4

5

6

6

13

9

45

7

8

8

19

45

13

13

25

18

6

1

1-73

MC 63-4

c)

columns 9-13 of the name card. The program follows the name card

and is in absolute row binary format. Each name card, and correspond-
ing program, represents one file in the SOS System tape. The program
decks must be in order as designated by their related sequence cards.

Blank Card--indicates to IBWR1 the termination of input. No input
cards may follow the blank card.

1.2.6.2 Output Requirements

Output from IBWR1 is the complete SOS System tape. (The composition,
by files, of the Mercury SOS System tape is illustrated in Table 1-1.)

1.2.6.3 Usage

a) Operator's Procedures:

1) Ready the on-line card reader with the IBWR1 program followed
by the SOS system input cards.

2) Ready a blank tape on A1.

3) Ready the on-line printer with the SHARE #2 board.

4) Press LOAD CARDS to load the IBWR1 program. IBWR1 reads
in the SOS System input cards and writes the SOS System tape on
A1.

5)

6)

The program halts at 005728 .

Press START to check the SOS System tape. The tape is reread
and checked for redundancy and valid checksum recording. An
on-line printout of file identifications and error indications, if
any, is furnished. Other on-line printouts include the total num-

ber of tape files written--excluding the bootstrap loader and the
end-of-tape files--the number of tape records, and any read/write
checks encountered.

7) The SOS System tape, A1, is rewound and the program comes to

a final halt at 01033 8.

b) Error Conditions--a complete list of program error stops is presented
in Table 1-2.

1-74

TABLE 1-2. IBWR1 PROGRAM STOPS

MC 63-4

Octal

Location

00201

00212

00433

00522

00533

00546

00563

00572

OO612

00660

00675

01004

• 01033

01041

Meaning and Procedure

Illegal system file name punched into sequence card. Correct and start again.

No sequence cards in system deck. Furnish same as required and start again.

System deck binary program card contains error in checksum. If SS1 is up,

press START button to cause card-punched sum to be ignored (this does not

affect validity of subsequent checksum recordings on System tape if the card

in question is correctly punched in all other respects). If SS1 is down and

SS2 is up, reload card in question and press START to reread and recheck. If

SS2 is down, reload entire subdeck (including related name card) containing

card in question to regenerate correct System tape file.

System deck binary program card punched with incorrect word count (i.e., ex-

ceeding 278). See 00433 stop regarding SS2 setting.

System sequence cards and name cards in asynchronous order. Place cards
in order and restart.

Illegal system name punched in name card. Correct and start again.

Sequence card present for which no corresponding program exists in system

deck. Eliminate sequence card or furnish program and restart.

System tape has just been written and rewound. Press console START button
to initiate full System tape checking.

Bad tape logic encountered during course of file recount procedure. Restart.

If this stop recurs, select different physical tape unit for A1.

Five successive failures occurred in attempting to write a System tape record.

If SS1 is up, press START to write record as is. If SS1 isdown, press START

to attempt rereading of record five additional times.

Bad tape logic encountered in attempting to pass over EOF mark following

bootstrap file. See 00612 stop.

Five successive failures in attempting to read System tape record. If SS1 is up,

press START to ignore error. IfSS1 isdown, press START to reread record.

Final IBWR1 stop. System tape is on tape unit A1.

Bad tape Jogic--EOF does not occur immediately following TCD (transfer

card) record. Restart from the beginning (possibly after having switched A1

to a different tape unit).

1-75

MC 63-4

1.2.7 SHARE SYSTEM TAPE EDITOR PROGRAM (IBWR2)

After the SOS System tape has been written by IBWR1, any or all of the files
of this tape may be edited and replaced by using the self-loading editing program,
IBWR2. This program may also be used to duplicate the SOS System Tape.

1.2.7.1 Input Requirements

Input to IBWR2 must be in the same format and have the same relative

order as the input to IBWRI: sequence cards, program decks (name card and
program), and a blank card as the last card. Each program represented by a
sequence card and a program deck replaces the program of the same name on
the SOS System tape.

The SOS System tape to be updated must be placed on tape unit B1.

If IBWR2 is used to duplicate the SOS System tape, the only input other than
the SOS System tape on B1 consists of a blank card. This card is placed imme-
diately after the IBWR2 self-loading program deck.

1.2.7.2 Output Requirements

Output from IBWR2 is an updated (or duplicate) SOS System tape. The
order of files on the updated tape will be identical to the order on the input
tape.

Usage

Operator's Procedures:

1) Ready the old SOS System tape on B1.

2) Ready a blank tape for output on A1.

3) Ready the IBWR2 program in the card reader.

4) Ready the input updated programs with at least one blank card
after the last program. Each updated program consists of its
appropriate name card, binary program cards, and associated
transfer card:

(a) If input is to be on-line, place the updated (row binary) cards
in the card reader behind IBWR2.

1-76

MC 63-4

(b) If input is to be from tape, go card-to-tape with the updated
(columnar binary) cards. Place this tape on A3 and depress
sense switch 2.

5)

6)

Ready the on-line printer with either the Share #2 board or the
MOCKDONALD printer board.

Press LOAD CARDS.

7) The program comes to a final halt at 01430 with the updated (or
duplicated SOS System) tape rewound on A1.

b) Error Conditions--a complete listing of program error stops is pre-
sented in Table 1-3.

1-77

MC 63-4

TABLE 1-3. IBWR2 PROGRAM STOPS

Octal

Location

01045

01053

O1O64

01067

01244

01247

01324

01325

01430

01453

01461

01471

01477

01507

01515

01523

01532

01540

01546

01554

01562

01602

01616

Meaning and Procedure

Illegal system name punched in name card. Correct and start again.

Program indicated on name card isnot on old SOS System tape. IBWR2 cannot
update program which does not exist on SOS System tape.

A file identification number on the old System tape exceeds 32, 76710. Start
again. If stop recurs, switch B1 to another tape unit and try again. If still

unsuccessful, the old System tape is probably no longer usable. A new System
tape should be written with IBWR1.

File to be updated has been bypassed on oldSystem tape. Check to ensure

that order of updated program decks corresponds to file order on old SOS Sys-

tem tape.

709 binary card punched with incorrect checksum. Correct and start again.

704 binary card punched with incorrect checksum. Correct and start again.

704 binary card punched with bad word count, i.e., exceeding 268 . Correct
and start again.

709 binary card punched with bad word count, i.e., exceeding 278 . Correct
and start again.

Final IBWR2 stop. UpdatedSOS System tape rewound on A1.

Read check on B1. If SS6 is up, press START button to attempt toreread 81;

if SS6 is down, press START to continue, ignoring error.

Write check on A1. If SS6 is up, press START button to rewrite and recheck;

if SS6 isdown, pressSTART to continue, ignoring error.

See stop location 01461

See stop location 01461

See stop location 01453

See stop location 01461

See stop location 01453

See stop location 01453

See stop location 01461

See stop location 01453

See stop location 01453

See stop location 01453

See stop location 01453

Redundancy on A3 (SYSPIT). Start again. Persistent redundancy indicates

blank card does not follow input programs. Rewrite SYSPIT before repeating.

1-78

MC 63-4

1.2.8 CONSOLE OPERATION DATA FOR MERCURY SOS

Tape Unit Assignments; Equipment System Symbols

Unit System Symbol

A1 System Tape SYSTAP
A2 Peripheral Output Tape SYSPOT
A3 Peripheral Input Tape SYSPIT

A4 Library Tape SYSLBR
A5 Peripheral Punch SYSPPT
B1 Mediary Input SYSMIT
B2 Mediary Output SYSMOT
Reader SYSCRD
Printer SYSPRT
Punch SYSPCH

SS1

SS2

SS3

SS4

SS5

SS6

Up
Down

up

Down

up
Down

up
Down

up
Down

Sense Switch Settings

Tape input
Card input

Not used

Print only control cards and error state-
ments on-line

On-line printing of everything

Compile or Execution run
"Rescue" operation to take core dump and
capture SNAPS from B2

Normal mode

Suppress SYSPOT output during CPL

Punch off-line, columnar binary
Punch on-line, columnar or row binary,

as specified in control cards

1-79

MC 63-4

Program Stops

The following is a complete list of Mercury SOS program stops:

Octal Locations

00173

01644

01746

02420

22422

Meaning

PAUSE card.

End-of-file (EOF) on tape unit A3 or on-line card
reader.

End-of-tape (EOT) on tape unit A2.

End-of-tape (EOT) on tape unit A5.

Tape unit A2 is full and rewinding; set new tape
on A2 and press START.

Redundancy check in reading or writing during
modifications punch squoze, or decoding. To
determine unit failing:

1) Display the sense indicators.

2) Subtract the decrement of the indicator

contents from 772738 .

3) Display the resulting location.

4) The contents of the address of the resulting
location is the octal code for the unit failing

(1201 is for A1, etc.).

5) Push START to accept the last attempt and
continue.

77202

1-80

MC 63-4

1.3 SOS LIBRARY TAPE

The SOS Library tape consists of utility computational subroutines which
are, in effect, programming aids to reduce the amount of programmer coding
needed to include a specific mathematical process in a program.

The programs included on the library tape are listed in Table 1-4. The num-
ber of locations and the time required by each program are also presented in the
table. LBRWR, the program used to generate a library tape, is described at the
end of this section.

To allow various programs of the Mercury Programming System to share
some library programs (and thus conserve core storage), it was necessary to
recode these library programs to protect intermediate or temporary results

from program interrupts and subsequent entry into the library program before
the interrupted pass could be completed. This recoding requires two library
tapes:

a) "Regular SOS Library"--a tape on which each program contains its own
temporary storage. This tape is used with SOS in compiling programs
for testing (whether or not the programs are later incorporated into the
Mercury Programming System).

b) "Mercury SOS Library"--a tape on which the programs lack individual
temporary storage. A program compiled using this tape (such as the
Mercury Programming System) must provide such storage by including
a COMMON BSS 5, O and arranging to preserve the five COMMON loca-
tions any time a program interrupt (trap) occurs. LBR cards of the
form LBR UISICO (with a blank location field) must be inserted in an

unheaded section of the program, though not necessarily in the order
in which the programs appear on the Library tape. Within any headed

sections using library programs, cards of the form SIN SYN $SIN
must be included for each exempt symbol. One or more "exempt
symbols" are listed for each library subroutine. A card of the form
LBR U1SICO will cause all instructions in the subroutine to be rela-

tivised to those symbols specifically exempted from relativization.
(To see the expanded routine in this form, a DETAIL card should pre-
cede the LBR card. A LIST card following the LBR will restore the
remainder of the listing to the undetailed mode. To suppress relativi-
zation and thereby bring in all symbols from the original symbolic
version of the subroutine, a card of the form LBR UISICO, U should

be used.)

The exempted symbols are normally those to which the user must have
access in the variable field of his TSX instruction. The indication of

which symbols are to be exempted is made at the time the library tape
is prepared.

1-81

MC 63-4

TABLE !-4. MERCURY SOS LIBRARY TAPE PROGRAMS

Name

U1SICO

U1EXPE

U1SQRT

U1LOGE

U1ATAB

U1ATNA

U1ASCO

U 1TACO

U1FXPT

U1FLPT

U3DOTP

U3XPRO

U3MATM

UA1LSC

U71NTP

U3VMAG

U3VPRO

U3UNTV

U7RVTH

U7ASKE

UAMSCP

Description

Sine/Cosine

Exponential

Square Root

Natural Logarithm

Arctangent A/B (requires U1ATNA)**

Arctangent A
Arcsine/Arccosine

Tangent/Cotangent

Fix a Floating-Point Number
Float a Fixed-Point Number

Vector Dot Product

!Vector Cross Product

!Matrix Multiplication

ConvertsXYZ Coordinates to RAE (requires
U1SQRT, U1ATAB, U1SICO; each used
twice)**

Six-Point Langrangian Interpolation

Vector Magnitude (requires U1SQRT)**

Vector Triple Cross Product

Unit Vector (requires U1SQRT)**

Elliptic Motion Computation (requires
U1SQRT,j U1ATAB, U3DOTP, U3VMAG,
U7ASKE)**

Solve Kepler'sEquation (requires U1SICO) **!

Sub Spacecraft Position (requires
U1SQRT, U1ATAB)***

Addressof
TSX

Instruction

SIN or COS

EXP

SQRT

LN

ATNAB

ATNA

ARSIN or
ARCOS

TAN or COT

FIX

FLOAT

U3DOT

U3XPR

U3MAT

A1LSC

UINTP

VMAG

VPRO

UNITV

C9RVTH or
C9RVT2

C9ASK E

A3MSCP or
A3MSCP + 12

Storage
Required

(Decimal)

Average Time
Required

(milliseconds)

I BM 709 II_ 7094
J

99 2.20 0.260

52* 3.05 0.200

43* 1.15 0.150

419 0.85 0.09

31" 3.01 0.080

81" 2.44 0.230

117" 1.75 0.251

88* 2.30 0.24

25* 0.42 0.056

21" 0.65 0.071

18" 0.98 0.102

33* 1.83 0.199

81 2.80 0.31

209 49.4 4.9

258*

19"

80

30*

380

104

119

26.37 4.02

2.46 0.130

4.41 0.49

3.52 0.374

18.46 2.91

18.68 3.09

8.71 1.35

*Recoded for the Mercury SOSLibrary tape to store temporary results in a 5-cell table common
to all indicated programs. The temporary storage cells are not included in the storage listing
above.

**When additional library programsare necessary for any library program, the '*Average Time Re-
quired" specifies the total time of execution, i.e., the time of the main library programplus the
time of the other library programsused by it as subroutines. If equivalent programsare substi-
tuted, the time of the main library program alone may be obtained by subtracting the time re-
quired by the subroutinesfrom the time listed for the main program.

1-82

MC 63-4

Caution: If a location symbol is assigned to the LBR card itself, it
will replace the symbol attachedto the first instruction generated by
the library routine rather than be made synonymouswith it.

1.3.1 SINE/COSINE SUBROUTINE (U1SICO)

UISICO computes the sine or cosine of an angle.

1.3.1.1 Input Requirements

The normalized floating-point angle in radians must be in the accumulator

upon entry into U1SICO. The absolute value of the argument must be less than
236.

1.3.1.2 Output Requirements

The normalized floating-point sine or cosine is present in the accumulator
upon exit from UISICO. The execution of U1SICO turns on the AC overflow
indicator.

1.3.1.3 Method

This subroutine was adapted from the SHARE-distributed subroutine IBSIN1.
Sine x is evaluated from one of two continued fractions.

a} For Ix I <-3:

Sine x = x (2)x 1042. 92670814
19.8459242619 + -_--+ 2

x + 50.0302454854

b) For .3< Ixl < 1.3:

Sine x = 19.47714945237 - 2m 2

3276.33995164 - 320m 2
2

m + 82.5803019956 +
2

m

2287.44319569

+ 24.1448946943

where m = (_/2 - x)

Cosine x is evaluated as sine (_r/2 - x)

1-83

MC 63-4

1.3.1.4

a)

Usage

Calling Sequence:

Location

atpha
+1
+2

Operation

TSX

Address, Tag, Decrement

SIN, 4 or COS, 4
Error return
Normal return

b) Error Conditions--an error return is made for any absolute value of

the argument equal to or greater than 236 t or if the divide check indi-

cator has been turned on during the execution of the program.

c) Storage Required--99 cells (plus five cells of common storage).

d) Time Required:

Sine 0.22 milliseconds
Cosine 0.260 milliseconds

e) Accuracy--the relative error is less than 1/2 x 10 -8.

f) Exempt Symbols--SIN, COS.

g) Library Identification--LBR U1SICO.

1.3.2 EXPONENTIAL SUBROUTINE (UIEXPE)

UIEXPE computes the value of the natural exponential function e x.

1.3.2.1 Input Requirements

The normalized single-precision floating-point argument (x) must be in the
accumulator upon entry into UIEXPE. The absolute value of x cannot exceed
88.088.

1.3.2.2 Output Requirements

i

The normalized floating-point product is present in the accumulator upon
exit from U1EXPE.

1.3.2.3 Method

antz
was

This subroutine uses a rational approximation developed by E. G. Kegbetli-
(IBM Journal of Research and Development, April 1957, pp. 110-115), and

adopted from the SHARE-distributed subroutine IBFXP.

1-84

MC 63-4

From the Pad_ table for x, the diagonal elements Pmm (x) = Pm (x) are

x Pm (x) eX
chosen so e = Pm (-x) + Rm (x)

in

(2m) ! Pm(x)=m!

s=O

andX=2 xlog2e=2 m+ f

(2m-s) ! x s

(s ! (m-s) I)

where 0 < f< 1.

Therefore, ex = 2m2 f

where m is the binary characteristic of x.

The value of 2 f is computed for the interval 0 -- f < 1.

By choosing m = 4 in the rational approximation, the bound for the relative

error is Rm(x) < 3 • 10 -9 .

Therefore,

2f=l+2f [A+ Bf 2-fC (f2+D)-l]

The values for the constants are:

-i

A = 9. 95459578
B = 0.03465735903
C = 617• 97226953
D= 87•417497202

log2e = 1• 44226950409

1.3.2.4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement

alpha TSX EXP, 4
+ 1 Error return
+ 2 Normal return

b) Error Conditions--an error return is made with x in the accumulator

for any value of x greater than 88. 088. (A normal return is made with
zero in the accumulator ff x is less than -88.088). An error return is

1-85

MC 63-4

c)

d)

also made, with x in the accumulator, if the divide check indicator is

turned on during execution of the subroutine.

Storage Required--52 cells (plus five cells of common storage).

Time Required:

Average

Maximum

0.200 millisecond

0.35 millisecond

e) Accuracy--the number of significant bits in the result is at least 155-
C, where C is the characteristic of the argument x.

f) Exempt Symbol--EXP.

g) Library Identification--LBR U1EXPE.

1.3.3 SQUARE ROOT SUBROUTINE (UISQRT)

UISQRT computes the square root of a number.

1.3.3.1 Input Requirements

The accumulator must contain the normalized single-precision floating-

point argument upon entry into UISQRT.

1.3.3.2 Output Requirements

The accumulator contains the normalized floating-point square root upon
exit from UISQRT. The AC overflow indicator light is turned on during the
execution of the program.

1.3.3.3 Method

This subroutine was adapted from the Share-distributed subroutine IBSQI:
if the argument is zero (positive or negative), it is returned. If the argument
is algebraically less than zero, an error return occurs with the argument in the
accumulator.

The floating-point argument has the form x • 2 C, where x is the normalized

fraction part (. 5 _- x < 1) and C is the characteristic. If the characteristic is
odd, it is increased by one and the fraction part is divided by two (the fraction

part is shifted one bit position to the right).

1-86

MC 63-4

SettingC=2b, _N S. 22b=2b _x.

The first approximation of _-_ is found by _ = Ax + B.

For 0.25 < x< .5 : A= 0.875, B= 0.27863

For 0.5 _ x< 1 : A = 0.578125, B = 0.421875

The first approximation is used to compute the square root (_-_ by two
Newton iterations:

X/'-N= a2 = _ +a

where:

al= _ +a

a 0 = 2 b g-_

b)

c)

d)

Usage

Calling Sequence:

alpha TSX SQRT, 4
+ 1 Error return

+ 2 Normal return_

Error Conditions--an error return occurs with the argument in the
accumulator for all values of the argument less than negative zero.
An error return also occurs if the divide check indicator light is
turned on during the execution of the program. (A normal return with
the argument in the accumulator is made for arguments of plus and
minus zero.)

Storage Required--43 cells (plus three cells of common storage).

Time Required--

Average
Maximum

IBM 7094

0. 150 millisecond
0. 118 millisecond

1-87

MC 63-4

e) Accuracy--26 significant bits.

f) Exempt Symbol--SQRT.

g) Library Identification--LBR UISQRT.

1.3.4 NATURAL LOGARITHM SUBROUTINE (UILOGE)

UILOGE computes the natural logarithm of a number.

1.3.4.1 Input Requirements

The accumulator must contain the argument in floating-point format upon
entry into U1LOGE. The argument must be positive and greater than zero.

1.3.4.2 Output Requirements

The accumulator contains the natural logarithm of the argument in floating-
point upon exit from UILOGE.

1.3.4.3 Method

The floating-point argument is in the form F-2 C, where C is the character-
istic and F is the fraction part.

Ifx= F'2C, Lnx= LnF+C Ln2, andLnx= Ln F +ImA+C Ln2.

In the common natural logarithm series (let F = y):

]Lny=2 y+---7_+_ +5_/ +" ""

If y is very nearly equal to 1, only the first term need be considered.

Therefore, A is chosen (by taking the first eight bits of F and adding a 1 in
the ninth bit position) very nearly equal to F, and the equation becomes:

Ln x_C Ln 2+ Ln A+ 2 (F - A)/(F + A).

The 256 possible values of Ln A are contained in a table within UILOGE.

1-88

MC 63-4

b)

c)

d)

Usage

Calling Sequence:

alpha TSX

+1

+2

LN, 4

Error return

Normal return

Error Conditions--an error return occurs when the argument is not
greater than positive zero, and an indication is stored in the decrement
of location LN: a 1 in the decrement for a negative argument, a 2 for
an argument of positive zero.

Storage Required--419 cells.

Time Required--0. 090 millisecond, average.

1.3.5 ARCTANGENT A/B SUBROUTINE (UIATAB)

U1ATAB computes the arctangent of the quotient A divided by B.

1.3.5.1 Input Requirements

The ordinate A must be in the accumulator and the abscissa B must be in

the multiplier-quotient upon entry to UIATAB. Both numbers must be in nor-

malized floating-point form and cannot simultaneously be equal to zero. The
program must have access to UIATNA.

1.3.5.2 Output Requirements

The accumulator contains the computed angle in floating-point radians upon
exit from U1ATAB. The absolute value of the angle is equal to or less than ?t
radians.

1-89

MC 63-4

1.3.5.3 Method

This subroutine was adaptedfrom the SHARE-distributed subroutine IBATN1
(modified). U1ATAB divides A by B and then uses U1ATNA to compute the abso-

lute value of the quotient obtained. U1ATAB places the angle in the proper
quadrant.

1.3.5.4 Usage

a) Calling Sequence:

alpha TSX ATNAB, 4

Error return

Normal return

+1

+2

b) Error Conditions--an error return occurs ff A = B = 0.

c) Storage Required--31 cells (plus five cells of common storage), not
including the subroutine U1ATNA.

d) Time Required (includes execution of UIATNA)--0. 080 millisecond,
average.

e) Accuracy--26 significant bits.

f) Exempt Symbol--ATNAB.

g) Library Identffication--LBR U1ATAB.

1.3.6 ARCTANGENT SUBROUTINE (UIATNA)

U1ATNA computes the arctangent of a number.

1.3.6.1 Input Requirements

The accumulator must contain the argument in floating-point format upon
entry into U1ATNA.

1-90

MC 63-4

1.3.6.2 Output Requirements

The accumulator contains the computed angle in floating-point radians
upon exit from U1ATNA. The absolute value of the angle is equal to or less
than rr/2 radians.

1.3°6.3 Method

UIATNA uses a rational approximation method developed by E. G. Kogbet-

liantz (IBM Journal of Research and Development, January 1958, pp. 43-53),
and was adapted from the Share-distributed subroutine IBATN1.

Given: 8 = arctan x. If the absolute value of x is greater than 227, e is

assumed to be y/2. If the absolute value of x is less than 2 -13, e is assumed

to be equal to x.

If neither of the above conditions is satisfied, x is divided into five sub-
intervals and the arctangent is computed from the following formulas:

I x
O= +K

-B 2 x
--+T +C
T 2 +A x

X

where:

A = 0.051119459
B = 0.0027099425
C = 0.21664913599

T x may have two forms, depending upon the range of x.

For Ix]< 0.1763298071:

T = 0.16363636363X
X

For Ix]} 0.1763298071:

-M
XT - +L

x x+N x
X

The values of the constant terms for each range are given below.

a) For Ix]<0.1763298071 (10]<10°):

K =0
X

1-91

MC 63-4

b) For 0.1763298071_< Ixl < 0.5530526919 (10°<__ 101 < 300):

c)

L = 0.44958721409
X

M = 1.398867082
X

N = 2.7474774195
X

K = 0.3490658504
X

For 0.5530526919_1x1< 1.1917535926 130°_101 < 500):

L = 0.19501422424
X

M = 0.39604526598
X

N = 1.1917535926
X

K = 0.6981317008
X

d) For 1.1917535926 <__Ixl < 2.7474774195 (500<_. 161 < 700):

L = 0.094475498595
X

M = 0.21818181818
x

N = 0.057735026919
X

K = 1.047197551
X

e) For 2.7474774195_ixl (70°_ 101):

L = 0.0288535059
X

M = 0.1687240152
x

N = 0.17632698071
X

K = 1.396263402
X

b)

c)

Usage

Calling Sequence:

alpha TSX ATNA, 4

+ 1 Normal return

Error Conditions--none.

Storage Required--81 cells (plus four cells of common storage)°

1-92

MC 63-4

d) Time Required:

Average

Maximum

0.230 millisecond

0.28 millisecond

e) Accuracy--26 significant bits.

f) Exempt Symbol--ATNA.

g) Library Identification--LBR UIATNA.

1.3.7 ARCSINE/ARCCOSINE SUBROUTINE (U1ASCO)

U1ASCO computes the arcsine or the arccosine of a number.

1.3.7.1 Input Requirements

The normalized floating-point argument {whose absolute value must be < 1)
must be in the accumulator upon entry into/U1ASCO.

1.3.7.2 Output Requirements

The floating-point answer is present in the accumulator upon exit from
U1ASCO. The result is expressed in radians, within the following limits:

-- --_< arcsine < 2 " 0 <_arccosine < _.
_ _ j m

1.3.7.3 Method

This subroutine uses a method developed by E. G. Kogbetliantz (IBM Journal

of Research and Development, Vol. 2, No. 3, July 1958, pp. 218-222). This sub-
routine was adapted from the Share-distributed subroutines IBASN2 and IBACS2.

In the determination of arcsine x, the range of x(0 _< Ixl < 1) is divided into

four intervals to define f(x) = arcsine x.

a) For 0<lxl<_2 -11 : f(x) =x

1-93

MC 63-4

b) For2-11<IxlK_- f(x) x(A+B)IC+ -D{E-x21-]
• = x 2 1 -1

where:

A = 0.5249978317

B = 1.578342904
C = 3.5574340883
D = 0.3321585891
E = 1.4156902913

c) For?<Ixl<_/2 + _ f(x)= w 1- _ " _-+ P(Y)

where:

P(Y) =Y(A+B[C-y2-1){E-y2}-I] -1)

y = 2x 2 - 1

d) For vr_ + _f_<lxl < 1 :
2 f(x) = 2 - 2/_ (1.085180421 - 0.0852176716x)

The arccosine is evaluated: arccosine x =-_ - arcsine x.

1.3.7.4 Usage

a) Calling Sequence:

alpha TSX ARSIN, 4 or ARCOS, 4

Error return

Normal return

+1

+2

b) Error Conditions--an error return occurs if the absolute value of the
argument exceeds one. An error return also occurs if the divide check

indicator light is turned on during execution of the program.

c) Storage Required--ll7 cells (plus five cells of common storage).

1-94

MC 63-4

d} Time Required:

Range of Argument

0 < I xl < 2 -11 0. 026 millisecond

2 -11 < {x I_ _/_- 0.157 millisecond
2

/2--< Ix I < 1 0 223 millisecond
2

(Times given apply to arcsine; computation of arccosine requires an
additional 0. 028 millisecond for IBM 7094_)

e) Accuracy--the relative error is less than 6.4 x 10 -7. in most cases

the result is accurate to seven significant digits.

f) Exempt Symbols--ARSIN, ARCOS.

g) Library Identification--LBR U1ASCO.

1.3.8 TANGENT/COTANGENT SUBROUTINE (U1TACO)

U1TACO computes the tangent or the cotangent of an angle.

1.3.8.1 Input Requirements

The normalized floating-point argument expressed in radians must be in
the accumulator upon entry into U1TACO. The argument of tangent must be

within the range I x l < 235. The argument for the cotangent must be within

the range I x l > 2-126.

1.3.8.2 Output Requirements

The accumulator contains the normalized floating-point tangent or cotan-
gent upon exit from U1TACO. Execution of the program turns on the AC over-
flow indicator light.

1.3.8.3 Method

The function is evaluated from a continuous fraction, based on a method
developed by H. J. Maehly and E. G. Kogbetliantz. The subroutine was adapted
from the Share-distributed subroutine IBTAN1.

1-95

MC 63-4

a)

b)

The argument is reduced to the first octant, where

Cot x = (3.4280166678 - 0.1015625000x2) -1

+ (25.2265398966) (x 2 - 10.43274050825) -1 - C(x)

For Ixl <-_.15, C(x) = 0.526-10 -7

For Ixl >.15, C(x) = 0

The tangent is computed from the cotangent in the first octant using
the following relationships:

_ 1For <__x <___ ; tan x = cot----'-x

For _<lxl<-,_; tanx=cot =

Usage

Calling Sequence:

alpha TSX

+1

+2

TAN, 4 or COT, 4

Error return

Normal return

b) Error Conditions--an error return occurs if the magnitude of the argu-

ment for the tangent exceeds modulo 235 or if the magnitude of the

argument for the cotangent is less than 2 -126 . An error return occurs

ff the divide check indicator light is turned on during the execution of
the program.

c) Storage Required--88 cells (plus five cells of common storage).

d) Time Required--0. 240 millisecond, average

-9
e) Accuracy--the absolute error is less than 8.6-10 ; the relative error

is less than 5.26" 10 -8 .

1-96

MC 63-4

f) Exempt Symbols--TAN, COT.

g) Library Identification--LBR UITACO.

i.3.9 FLOATING TO FIXED-POINT CONVERSION SUBROUTINE (UIFXPT)

UIFXPT converts a number from floating-pointto fixed-point format.

1.3.9.1 Input Requirements

The accumulator must contain the floating-point number upon entry into
U1FXPT. The floating-point number to be converted must satisfy the con-

ditions: 2 -35< N-< 235 .

1.3.9.2 Output Requirements

The accumulator contains the integral part of the number and the multi-
plier-quotient contains the fractional part of the number upon exit from U1FXPT.

1.3.9.3 Method

The floating-point number of the form X • 2 C is examined to determine
whether the characteristic C satisfies the conditions: 93 < C < 164. If C is

outside the allowable range, an error return occurs since the leading bit of the
result would be lost.

The 26 bits of the fractional part of the floating-point number are shifted
so the fixed-point integral is right-justified in the accumulator and the fixed-
point fraction is left-justified in the multiplier-quotient. The AC and MQ are
effectively treated as one register with the decimal point for the fixed-point
number after accumulator bit position 35.

Usage

Calling Sequence:

Location

alpha

+1

+2

Operation

TSX

Address, Tag, Decrement

FIX, 4

Error return

Normal return

1-97

MC 63-4

b) Error Conditions--an error return occurs when the characteristic of
the given floating-point number is such that the fixed number would
have no significant bits.

c) Storage Required--25 cells (plus two cells of common storage).

d) Time Required--0. 056 millisecond, average

e) Accuracy--26 significant bits.

f) Exempt Symbol--FiX.

g) Library Identification--LBR UIFXPT.

1.3.10 FIXED- TO FLOATING-POINT CONVERSION SUBROUTINE (U1FLPT)

UIFLPT converts a number from fixed-point to floating-point format.

1.3.10.1 Input Requirement

The accumulator must contain the integral part of the fixed-point number,
right-justified, and the multiplier-quotient must contain the fraction part of the

fixed-point number upon entry into UIFLPT. The fixed-point number (FX)

must satisfy the conditions: 2 -35 < FX < 237. If this number is an integer,

the MQ must be cleared. If the magnitude of the number is less than one (the

number is a fraction), the ACQ, p, 1-35 must be cleared.

1.3.10.2 Output Requirements

The accumulator contains the converted floating-point number upon exit
from UIFLPT.

1.3.10.3 Method

The 72-bit argument (ACQ, p, 1-35 and MQ1_35) is divided into two 27-bit

bytes and an 18-bit byte. If the high-order byte is zero, it is temporarily
stored as a normal floating-point zero. If the high-order byte is nonzero, it
is given a characteristic of 165 and temporarily stored.

1-98

MC 63-4

The second byte is examined and, if nonzero, is given a characteristic of

138 and temporarily stored. The low-order byte is right-justified and given a
characteristic of 120. The three bytes now in normalized floating-point format
are added, giving the normalized floating-point result.

1.3.10.4 Usage

a) Calling Sequence:

Location

alpha

+1

Operation

TSX

Error Conditions--none.

Address, Tag, Decrement

FLOAT, 4

Normal return

b)

c) Storage Required--21 cells (plus two cells of common storage).

d) Time Required--0. 071 millisecond, average

e) Accuracy--26 significantbits.

f) Exempt Symbol--FLOAT.

g) Library Identification--LBR UIFLPT.

1.3.11 DOT PRODUCT SUBROUTINE (U3DOTP)

U3DOTP computes the dot (inner) product of two, real 3-dimensional
vectors.

1.3.11.1 Input Requirements

The three components for each of the two operand vectors must occupy
three consecutive locations in core storage in corresponding order and must be
expressed in single-precision floating-point format. The first location of the
components of one vector must be stored in LV1, the address of the second

word of the callIng sequence; the first location of the components of the second
vector must be stored in LV2, the decrement of the second word of the calling
sequence upon entry to U3DOTP. The program which uses U3DOTP provides
locations designated by LV1 and LV2.

1-99

MC 63-4

1.3.11.2 Output Requirements

The accumulator contains the floating-point scalar product upon exit from
U3DOTP.

1.3.1 i.3 Method

Ifthe components of 71 and 7 2 are _la + 71b + 71c and V2a

the dot product is defined:

_71" "_2 : "_la" 72a + _'lb" _2b + _}1c" _2c

+ V2b + V2c,

1.3. ii. 4 Usage

a) Calling Sequence:

Location Operation Address, Tag, Decrement

alpha TSX U3DOTj 4

+ 1 PZE LV1,, LV2

+ 2 Normal return

b) Error Conditions--none.

c) Storage Required--18 cells (plus two cells of common storage).

d) Time Required:

Average

Maximum

0. 102 millisecond

0. 137 millisecond

e) Accuracy--26 significant bits.

f) Exempt Symbol--U3DOT.

g) Library Identification--LBR U3DOTP.

I.3.12 CROSS PRODUCT SUBROUTINE (U3XPRO)

U3XPRO computes the cross (outer) product of two, real 3-dimensional
vectors.

i-i00

MC 63-4

1.3.12.1 Input Requirement

The three components for each of the two openend vectors must occupy
three consecutive locations in core storage in corresponding order and must be
expressed in single-precision, floating-point format. The first location of the
components of one vector must be stored in LV1, the address of the second
word of the calling sequence; the first location of the components of the second
vector must be stored in LV2, the decrement of the second word of the calling

sequence upon entry to U3XPRO. The program which uses U3XPRO supplies
the locations designated by LV1 and LV2.

1.3.12.2 Output Requirements

The three components of the vector cross product are stored in three con-
secutive core storage locations in the same order as that of the operand vectors
upon exit from U3XPRO. The location in which the first component is stored,
LV3, is contained in the address of the third word of the calling sequence and
is supplied by the program which uses U3XPRO.

I. 3.12.3 Method

If the components of V 1 and V 2 are Vla

the cross product is defined:

V3a = Vlb (V2c) - Vlc (V2b)

Ib _ --_ ,-b --0

V3b = Vlc (V2a) - Vla (V2c)

V3c = Vla (V2b) - Vlb (V2a)

+ _lb + _1c and _2a + _2b + _2c'

1.3.12.4 Usage

a) Calling Sequence:

Location

alpha

+1

+2

+3

Operation

TSX

PZE

PZE

Address, Tag_ Decrement

U3XPR, 4

LVI_ : LV2

LV3

Normal return

I-i01

MC 63-4

h)

c)

e)

O

g)

Error Conditions--none.

Storage Required--33 cells (plus two cells of common storage).

Time Required:

Average

Maximum

Accuracy--26 significant bits.

Exempt Symbol--U3XPR.

Library Identification--LBR

O. 199 millisecond

O. 242 millisecond

U3XPRO.

1.3.13 MATRIX MULTIPLICATION SUBROUTINE (U3MATM)

U3MATM computes the product of two matrices.

1.3.13.1 Input Requirements

The two input matrices must be rectangular and must each be stored in

consecutive core storage locations by rows. The address of the second and
third words of the calling sequence must contain the first locations, respectively,
of the two input matrices, A and B. The address of the fourth word of the
calling sequence must contain the first location of the matrix product, C. The
decrement of the second, third and fourth words must contain the matrix di-
mensions L, M and N, respectively, which define the dimensions of the three
matrices in the following manner: if A is L x M and B is M x N, then C is
LxN.

1.3.13.2 Output Requirements

The matrix product is stored by rows in L x N consecutive core storage
locations, beginning with the location specified by C.

1.3.13.3 Method

U3MATM uses the standard row-by-column multiplication to obtain the
matrix product elements.

1-102

MC 63-4

1.3.13.4 Usage

a) Calling Sequence:

Location

alpha

+1

+2

+3

+4

b)

e)

d)

e)

0

g)

Operation

TSX

PZE

PZE

PZE

Address, Tag, Decrement

U3MAT, 4

A,,L

B,,M

C,,N

Normal return

Error Conditions--none.

Storage Required--81 cells.

Time Required--0.31 millisecond, average

Accuracy--26 significant bits.

Exempt Symbol--U3MAT.

Library Identification--LBR U3MATM.

1.3.14 STATION COORDINATE CONVERSION SUBROUTINE (UA1LSC)

UA1LSC converts an inertial position vector into values of range, azimuth
and elevation. The flow chart for UAILSC is shown in Figure 1-1.

1.3.14.1 Input Requirements

The address of the second word of the calling sequence must contain the
location of a 5-ceU input block; the decrement of the second word must con-
tain the first location of a 12-cell block which contains the output. The 5-cell
input block contains:

Location Contents

LCINP Time of observation (minutes in address, seconds in

decrement} in GMT for the following inertial position
vector.

1-103

MC 63-4

Location

+1

+2

+3

+4

Contents

X component of spacecraft position, floating-point

Y component of spacecraft position, floating-point

Z component of spacecraft position, floating-point

Location of the station characteristics block for the station.

UA1LSC must have access to the following programs:
and U1SICO.

UISQRT, U1ATAB

1.3.14.2 Output Requirements

UAILSC fills a 12-cell output block as shown below:

Location Contents

LCOUT Range (R), floating-point Mercury units

+ 1 Azimuth angle (A), floating-point radians

+ 2 Elevation angle (E), floating-point radians

+ 3 -sin k

+ 4 cos k

+5 0

+6 -cosk sincp

+ 7 -sin k sin _p

+ 8 cos _p

+9 cosk coscp

+ 10 sin k cos_p

+ Ii sin _0

The last nine cells contain the three rows of the M matrix. The angles are

defined in the following subsection.

1-104

MC 63-4

1.3.14.3 Method

UAILSC uses the following equations to compute range, azimuth and
elevation:

k = k 0 + O_et

ixl o 011:it0Y" = -cos k sin _ -sin k sin q_ cos sSin(_ - _0 ")

Z. _cosk coscp sink cos(p sin _-RsCOS(_ _")/

/ix,)2 _-z'.R = + (y,.)2 + (Z,,)2 sinE R

A = arctan X--
y,

sin E
E = arctan

cos E

cos E= _1- sin 2 E

where:

k
t,

_0

t

tO
e

X, Y, Z

R
S

= longitude of the station

= longitude of station at reference time

= time (in minutes) since reference time

= rotation of earth, radians/minute = 0.00437526905

= given inertial spacecraft position coordinates

= geocentric radius of earth at station, Mercury units

= geodetic latitude of station

= geocentric latitude of station

I. 3.14.4 Usage

a) Calling Sequence:

Location

alpha

+1

Operation

TSX

PZE

Address, Tag, Decrement

AILSC, 4

LCINP,, LCOUT

1-105

MC 63-4

Location Operation Address, Tag, Decrement

+ 2 Error return

+ 3 Normal return

b) Error Conditions--the decrement of A1LSC contains the source of the

error return--l, 2 or 4 indicate error returns from U1SQRT, U1ATAB
or U1SICO, respectively. There is no error return from UA1LSC
itself.

c) Storage Required--209 cells.

d) Time Required (includes execution of U1SICO, U1SQRT and UIATAB,

each twice): 4.9 miHiRecond, average

e) Accuracy--the range (R) is accurate to 26 significant bits; the azimuth
(Z) and elevation (E) angles are both accurate to seven significant
digits.

f) Exempt Symbol--AILSC.

g) Library Identification--LBR UA1LSC.

1-106

MC 63-4

STORE T, X, Y, Z,
LOC. OF STATION

BLOCK

CONVERT T TO
FLOATING-POINT

MINUTES

i
CALCULATE STATION J

INERTIAL LONG. L= I

_.O + .00437526905t J

t
ADJUST L TO BE I

I

BETWEEN O AND I2rr

_,_L.co_, /_,u_,

STORE
ERROR
CODE

=1

CALCULATE, STORE IN

ROWS: M =

I-:COSLS,N¢, -S,NL S,N¢, COS¢,
\ COSLCOS¢, SmCCOS¢ S,N?,

CALCULATE:

FIGURE 1-1.

x"\ /x"
"'/=|Y "+ RSSIN(_ -
"/ \z'- RSCOS(_-

STORE I
ERROR
CODE

= 2

STORE

I ERROR
CODE
=4

CALCULATE, STORE:

R=I _1=,'"

+

UlA+AB= ARCTAN X "'/Y

IS A PLUS

I CALCULATE, STORE:A=A+ 2rt

I_R,_o_/Ul,SCO\
r;,_ E=,Rcs,NZ'_r"_

UAILSC SUBROUTINE FLOW CHART

I-I07

MC 63-4

1.3.15 SIX-POINT LAGRANGIAN INTERPOLATION SUBROUTINE (U7INTP)

U7INTP performs a 6-point Lagrangian interpolation to determine inter-
mediate values of the radius or radius and velocity vectors. The flow chart
for U7INTP is shown in Figure 1-2.

1.3.15.1 Input Requirements

The following conditions apply for all entries to U7INTP:

a) All vector components must be expressed in floating-point format.

b) The address (TOBMN) and the decrement (TOBSC) of the second word
of the calling sequence must contain the minutes and seconds, respec-
tively, of the time for interpolation.

c) The address (LOCN1) and the decrement (LCOUT) of the third word in
the calling sequence must contain, respectively, the location of the
numerical integration table to be used for interpolation and the loca-
tion for storing the generated output block of vector components.

The fourth word (Alpha + 3) of the calling sequence correlates the numerical

integration in_t table with the interpolation output required, as shown below:

a) Combinations for Interpolation:

Interpolation
Address, Tag,

Numerical Integration Table Decrement (_ + 3)

Radius Radius 0,, 0

Radius Radius and velocity 0,, 1

Radius and velocity Radius and velocity 1,, 1

b) Format of Numerical Integration Table:

Location Contents

LOCNI Time increment of table (0 = minutes, 1 = seconds)

+1

+2

+3

+4

+6

Integration output interval

Time tag of first vector in table

Time tag of last vector in table

Components of first radius vector

1-108

MC 63-4

c)

Location Contents

+8

+9

+ 10

etc.

Components of first velocity vector, if table contains

radius and velocity; components of second radius vec-

tor if table contains only radius values.

U7INTP may use either a "minutes" integration table if the time of
interpolation is an integral number of minutes, or a "seconds" inte-
gration table if the time is an integral number of seconds.

Special Case, Extract Anchor Point--with the tag of the second word
of the calling sequence (T) equal to 1, U7INTP extracts the radius and
velocity vectors for the time specified, TOBMN, from the specified
numerical integration table. The table must contain both radius and
velocity vectors (the decrement of Alpha + 3 must be 1) and the table
must contain components of the vectors for 1-minute intervals (the
contents of location LOCNI must be zero).

1.3.15.2 Output Requirements

The output from U7INTP depends upon the conditions established at entry.

a) Interpolation Case:

Location

LCOUT

+1

+2

+3

+4

+5

Contents

,=$

ry

rz ,.

Interpolated components of radius vector

!V X

.=$

Vy

z

Interpolated components of velocity vector, if
velocity interpolation is required

1-109

MC 63-4

b) Anchor Point Extraction:

Location Contents

LCOUT

+I

+2

+3

TOBMN ("Time of Observation" in minutes)

r
x

r Extracted radius vector
Y

r
z

+4 v
x

+5 V
Y

+6 v
z

Extracted velocity vector

1.3.15.3 Method

a) Interpolation--U7INTP uses a 6-point Lagrangian interpolation. The
nmnerical integration table must contain the three points prior to and
after the input time (TOB). The interpolated radius (or vector) com-

,-t

ponent r is computed from the formula:

3

r = _. Li r i
i = -2

where r_2 , _-I and r 0 are the vector components for the three times

immediately prior to the input time; _1' _2 and r 3 are the vector com-

ponen_ for the three times immediately following the input time; and
L. is defined as:

1

1
L-2- 120 (t+ 1) (t) (t- 1) (t-2) (t-3)

1
L_l=+_(t+ 2) (t) (t- 1) (t-2) (t-3)

1
L 0 = -_(t+ 2) (t+ 1) (t- 1) (t- 3)

1-110

MC 63-4

b)

1
L1 = + i-2 (t+ 2) (t+ i) (t)(t- 2) (t-3)

1
L2 - 24 (t+ 2) (t+ 1) (t)(t- 1) (t- 3)

1
L3 = +_-0 (t+2) (t+ 1) (t) (t- 1) (t-2)

-4

and t is the ratio of the time increment (time of r minus time of r0)

to the interval between any two adjacent corresponding vector com-
ponents in the numerical integration table. Therefore, t < 1.

Anchor Point Extraction--U7INTP searches the given numerical inte-
gration table for the required values and places them in the assigned
output location.

1.3.15.4 Usage

a} Calling Sequence:

Location Operation Address, Tag, Decrement

alpha

alpha + 1

alpha + 2

alpha + 3

alpha + 4

alpha + 5

TSX

PZE

PZE

PZE

UINTP, 4

TOBMN, , TOBSC

LOCNI, T, LCOUT

(Output),, (Input)

Error return

Normal return

b) Error Conditions--an error return occurs if sufficient vector com-

ponents are not available in the numerical integration table to perform

a 6-point interpolation. The contents of the accumulator indicate
which part of the numerical integration table prohibits interpolation:
zero indicates insufficient vectors at the beginning; a 1 indicates in-
sufficient vectors at the end. An error return also occurs if, in the

anchor point case, a numerical integration table with second intervals
is specified.

c) Storage Required--258 cells (plus five additional cells of common
storage).

1-111

MC 634

d) Time Required:

e)

0

g)

Interpolation

"-4

r only

randv

Anchor Point

Accuracy--26 significant bits.

Exempt Symbol--UINTP.

Library Identification--LBR

IBM 7094

2.81 milliseconds

3.76 milliseconds

0.26 millisecond

UTINTP.

1-112

MC 63-4

INITIALIZE XR'S,

CONVERT MIN TO SEC,

CONVERT TIME TO

MERCURY UNITS,

STORE'_ AND

VECTORS iN

OUTPUT AREA

CONVERT J
MINUTES TO

SECONDS

HAVE

ENOUGH

STARTING
COMPUTE T

NO

HAVE
ENOUGH

ENDING

NO

1 _AC

r--

RESTORE XR'S j

NO

ENOUGH

POINTS

YES

HAVE
ENOUGH

STARTING

RORRV:0

FIND FIRST

VECTOR FROM
&-_ N.I. TABLE

FIND FIRST

VECTOR FROM
N.I. TABLE

INTERPOLATE

3 VECTORS

l
J STORE

INTERPOLATED

VALUES

YES

FIGURE 1-2. U71NTP SUBROUTINE FLOW CHART

1-113

MC 63-4

1.3.16 VECTOR MAGNITUDESUBROUTINE(U3VMAG)

U3VMAGgenerates the magnitude of a given vector.

1.3.16.1 Input Requirements

The three componentsfor the vector must be stored in three consecutive
core storage locations and must be expressed in floating-point format. The
first location of the componentsof the vector must be stored in the address of
the secondword of the calling sequence, as designatedby LV1, uponentry
into U3VMAG. Theprogram must have access to the square root program,
U1SQRT.

1.3.16.2 Output Requirements

The accumulator contains the floating-point magnitude of the given vector
componentsuponexit from U3VMAG.

1.3.16.3 Method

If the componentsof the vector, V, are Va
vector is defined:

+ Vb + Ve, the magnitude of the

_/Va Vb2 2V = 2+ + Vc

1.3.16.4 Usage

a) Calling Sequence:

Location Operation

alpha

alpha + 1

alpha + 2

alpha + 3

TSX

PZE

Address, Tag, Decrement

VMAG, 4

LV1

Error return

Normal return

b) Error Condition--an error return is an almost certain sign of machine
malfunction. An even return from U3VMAG is the result of an error

return from the subroutine U1SQRT. Floating-point underflow or
overflow is possible if the characteristic, C, of any of the components

of the given vector fails to satisfy the relation: 63 < C < 192.

1-114

MC 63-4

c)

d)

Storage Required--19 cells (plus one cell of common storage).

Time Required (includes execution of U1SQRT):

Average 0.130 millisecond

Maximum 0.292 millisecond

e) Accuracy--26 significant bits.

f) Exempt Symbol--VMAG.

g) Library Identification--LBR U3VMAG.

1.3.17 VECTOR TRIPLE CROSS-PRODUCT SUBROUTINE (U3VPRO)

U3VPRO computes the vector cross-product of three given vectors.

1.3.17.1 Input Requirements

The three components of each of the three input vectors must occupy three
consecutive locations in core storage upon entry into U3VPRO. The components
for each vector must be arranged in corresponding order. If the cross-product

is defined as _r x (5 x VI, the location of the first component of ,_r must be

stored in the address of the second word of the calling sequence (LOCWa), the

location of the first component of U must be stored in the decrement of the

second word of the calling sequence (LOCUa), and the location of the first com-

ponent of V must be stored in the address of the third word of the calling se-

quence (LOCV a).

The first location of the three cells, where U3VPRO stores the resultant

vector Y components, must be stored in the decrement of the third word of the

calling sequence (LOCYa). All values must be in floating-point format.

1.3.17.2 Output Requirements

The three components of the resultant vector are stored in three consecu-
.,$

tive core storage locations beginning with the LOCY .
a

1-115

MC 63-4

1.3.17.3 Method

IfY -- W x(U x V), thenY = (W- V) U-(W - U) V.

1.3.17.4 Usage

a) Calling Sequence:

Location

alpha

+I

+2

Operation

TSX

PZE

PZE

+3

b) Error Conditions--none.

c) Storage Required--80 cells.

d) Time Required--0.490 millisecond, average

e) Accuracy--eight significant digits.

f) Exempt Symbol--VPRO.

g) Library Identification--LBR U3VPRO.

Address Tag, Decrement

VPRO, 4

LOCW a, , LOCU a

LOCV a, , LOCY a

Normal return

1.3.18 UNIT VECTOR SUBROUTINE (U3UNTV)

U3UNTV generates the unit vector of a given vector.

1.3.18.1 Input Requirements

The three components of the given vector must occupy three consecutive
locations in core storage and must be expressed in floating-point format. The
first location of the three components must be stored in LV1. the address of

1-116

MC 63-4

the secondword of the calling sequence.
supplies the location designated by LV1.
square root program, U1SQRT.

The program which uses U3UNTV
U3UNTV must have access to the

1.3.18.2 Output Requirements

The three components of the generated unit vector are stored in three con-
secutive core storage locations in the same order as that of the given vector.
The location in which the first component is stored, LV2, is contained in the
decrement of the second word of the calling sequence and is supplied by the
program which uses U3UNTV.

1.3.18.3 Method

The vector magnitude, V, of the vector V is computed from the components

Va, V b and Vc. The unit vector components are computed by dividing the

vector component by the vector magnitude. Therefore:

V Vb

Va "V Vb = _ c V-- .

1.3.18.4 Usage

a} Calling Sequence:

Location

alpha

+1

+2

+3

Operation

TSX

PZE

Address, Tag, Decrement

UNITV, 4

LV1,, LV2

Error return

Normal return

b) Error Conditions--an error return is a logical impossibility and im-
plies a machine malfunction.

c) Storage Required--30 cells (plus two cells of common storage).

1-117

MC 63-4

d) Time Required (includes execution of UISQRT):

Average 0.374 millisecond

Maximum 0.406 millisecond

e) Accuracy--26 significant bits.

f) Exempt Symbol--UNITV.

g) Library Identification--LBR U3UNTV.

1.3.19 COMPUTATION OF ELLIPTIC MOTION DURING LAUNCH PHASE

SUBROUTINE (C9RVTH)

C9RVTH, called from the SOS library tape by LBR U7RVTH, predicts the
position and velocity of the spacecraft under the assumption of elliptic motion
with no drag or oblateness perturbations.

Given the position and velocity at some time t, C9RVTH computes the posi-
tion and velocity at time t + A t or at a specified height above the earth.

The flow chart for C9RVTH is shown in Figure 1-3.

1.3.19.1 Input Requirements

C9RVTH may be entered at either of two places, C9RVTH or C9RVT2, de-
pending on whether new orbit elements must be computed. The input which
must be provided to obtain the desired output is summarized below:

a) Entry at C9RVTH.

AC MQ

plus minus

zero minus

minus minus

plus plus

minus or
zero plus

Input Output

r, , At r, andv
ms -_ ms _|

r, v, hs, R s r, v and At
mS ms ms ,.4

r, v, hs, R s r, v, T and At
ms ms ms!

r, v, At r

ms ms ms!

r, v, h s, R s r and At

1-118

MC 63-4

b) Entry at C9RVT2. (Prior entry must have been made at C9RVTH and
the initial _ and _ and the corresponding orbit elements must be availa-

ble in core.)

AC MQ Input Output

==b! "#!

plus minus At r and v

zero minus hs, R s r , v and At
..=_! -#!

minus minus hs, R s r, v, _/ and At

plus plus A t r

,=4!

minus or plus hs, R s r and At
zero

All values are Mercury units. The computed At is assumed positive.

Eccentricity, e, is set = 1 if it initially exceeds unity.

C9RVTH must have access to the UISQRT, UIATAB, UIATNA, U3DOTP,

U3VMAG, and C9ASKE subroutines.

The error returns from all of the above subroutines are NOPs.

The locations of the above input and output quantities are specified in the

calling sequence to C9RVTH (see subparagraph 1.3.19.4a).

1.3.19.2 Output Requirements

See above. If _t was computed, it will be in the AC in Mercury units upon
exit from C9RVTH.

1.3.19.3 Method

r= Irlandv= Iv]

2
ecos E=rv =-i

r
a =

1 - e cos E

1-119

MC 63-4

r o ve sin E=

/ a

e -- /ie sin E) 2+(ecos E) 2

If e < ecritical, the motion is nearly circular, and the calculation of the

new position and velocity is not made. A special exit is made from C9RVTH.

/e sinE)cos EE=arctan e , -_ < E <

M=E - e sin E.

If hs is given, compute r = R s + h s. (If r >a (1 + e), the specified

height, hs, is greater than the apogee height _nd therefore cannot be attained,

and a special exit is made from C9RVTH).

1

, a-r
e cos E -

a

' vJe2 ' 2e sinE =- - (ecos E)

t !

M =E
!

- e sin E

!

M -M
_t-

n

If At is given, compute M = M + n (At).
1 1

sin E for E using the subroutine C9ASKE.

t 1

f=-ecos E+ cos E cos E+ sinE
1 - e cos E

! !

Solve Keplers' equation M = E

sin E

! !

l[(cos E- e) sinE - (cos E -e) sinE]g-_

, .. g_r =fr+ .

! t

Either r = a(1-ecos E)

v' _
= 2 -1

-e

1-120

MC 63-4

tan T =

Or

I I

= arc tan (tan %,).

E'- E']
_sin E cos sin cos E!

f =n [(1-ecos E') (1-ecos E)

gl = I- Cos E' + cos1- Ele cosC°SE'E+ sin E l

v=f r+ g'v.

sin E]

1.3.19.4 Usage

a) Calling Sequence:

alpha TSX C9RVTH, 4 (orbit elements have NOT
been calculated)

or

TSX C9RVT2, 4

+ 1 PZE L ,, L (v)

(orbit elements have been
previously calculated)

+ 2 PZE A,, B

l

+ 3 PZE L(r),, C

+ 4 Error return (circular orbit)

+ 5 Error return (cannot reach hs)

+ 6 Normal return

where the symbols in the calling sequence are defined as:

AC MQ A__ B_ _C

plus minus L (ht) zero L (v)

zero minus L (Rs) L (hs) L (v)
.,,|

minus minus L (Rs) L (hs) L (v)

1-121

MC 63-4

A S C___AC MQ __

zero or plus L (Rs) L (hs) zerominus

plus plus L (St) zero zero

and L (r) is the address of the first location of a 3-word block contain-

ing the components of the input position vector, in Mercury
units.

L (_ is the address of the first location of a 3-word block contain-

ing the components of the input velocity vector, in Mercury
units.

L (_t) is the location containing the input quantity At, in Mercury
units.

L(R) is the location containing the input quantity R s, radius of the
s earth, in Mercury units.

L(h.)is the location containing the input quantity h R, height of
spacecraft above the earth, in Mercury units:

-el

L (r) is the address of the first location of the 3-word block con-
taining components of the computed position vector.

-tl

L (v) is the address of the first location of the 3-word block con-
talning components of the computed velocity vector.

!

L (v) is the address of the first location of a 2-word block; the
first word contains the magnitude of the computed velocity,
the second word contains the computed flight path angle.

b) Error conditions:

c)

d)

1) A return to alpha + 4 indicates a circular orbit.

2) A return to alpha + 5 indicates the orbit will not reach hs-

3) Error returns from subroutines used have been set to NOPs.

Storage Required--38010 locations, including constants and temporary

storage, but excluding subroutines.

Time Required (maximum number of IBM 7094 machine cycles, exclud-

ing subroutines)--133310.

t

I

1-122

MC 63-4

e) Accuracy--Seven significant decimal digits.

f_ Exempt symbols--C9RVTH and C9RVT2.

g) Library Identification--LBR U7RVTH.

1-123

MC 63-4

C9RVT_

STORE

AC IN C9ACC

MQ IN C9MQ

STORE J
INPUT AND

INITIALIZE

J STORE I
ADDRESSES

OF OUTPUT

U3VMAGTOCALCULATE / _K_" ,ulcN/

t
CALCULATE

• COS E =

rv 2- 1

J CALCUL?TE

t
I CALCULATEJ

I
1

U3DOTP

TO CALCULATE/

!
CALCULATE

• SIN E =

V-°

CALCULATE

.2 = (e SIN E)2

+ (e COS E) 2

t

UISQRT __

t
ATE.. "_

GAINST ec

e© = .003
a+4

TEST SET

e>l e=l

CALCULATE

-w < E<

FIGURE 1-3. CgRVTH SUBROUTINE FLOW CHART (Sheet 1 of 4)

1-124

MC 63-4

C9RVT2

ADDRESSES

I

STORE

INPUTt (_

STORE J CALCULATEM= E-e SIN E

C90P2 _-_

0OR- i C9ACC FOR /

OPTION jr

CALCULATE ir'_ a(1 + e)

t
_r TEST

• L 0(1 +e)]
J

t YES

CALCULATE
• COS E" =

(=--r')
O

1

e SIN E" =

- _e 2 --(e COS'E•)2 '

CALCULATE 1

M" = E" -

• SIN E"

NO

J TRANSFER J_1 TOa+ 5

+

C90NE 1

CALCULATE

M'= M+

n/_tC9AS!E TO

\ CALCULATE /

\E:S,NE•.COSE'_

TEST _YES CALCULATE
• SIN E"

MINUS • COS E"

J YES

M FOR

TEST

M'FOR

PLUS

1 .°
ADD M"

TO
2tr

i
FIGURE 1-3. C9RVTH SUBROUTINE FLOW CHART (Sheet 2 0[4)

1-125-

MC 63-4

C9TWO

f
-eCOSE+COSE'COS E+SIN E" SIN E

1 - e COS E

g_-_-

t

[(,:o_F-.)_,.,:'-{co_,:--.}_,.,:] ---'n

C9THR

J r" = a(|-eCOS E')

t

I v,--4_ '
r

FIGURE 1-3.

C9HOW I --

NO _9ACC=0_

YES

STOR E

OUTPUT

9ACtC=0_ Y ES

NO

J = FSINECOSE'-SINE'COSE-J Jf" I(i-oCOSE') (1-oCOSEIJ "

1I' :-'OSE' OSE OSE S'NES'N I1-•OS
C9RVTH SUBROUTINE.FLOW CHART CSheet_ ot"4)

1
STORE

At IN AC

I

1-126

MC 63-4

?
I , e=V/_INE"
TAN y - e2

U1ATAB

STORE

OUTPUT

7"_'y,, ,
At IN THE AC

CALCULATE
Pv =f' +

STORE

OUTPUT

7 "AND _ "

C9ACC=0 _ YES

NO

STORE

At IN AC

I

FIGURE I-3. C9RVTH SUBROUTINE FLOW CHART (Sheet 4 of 4)

1-127

MC 63-4

I.3.20 SOLUTION OF KEPLER'S EQUATION SUBROUTINE (C9ASKE)

C9ASKE, called from the SOS library tape by LBR U7ASKE, solves the

equation M = E - E sin E for E, Sin E, and Cos E, given M and e.

1.3.20.1 Input Requirements

The eccentricity of orbital ellipse e, and the mean anomaly at time t, M,
both in floating-point, must be available in two consecutive locations. The
address of the first of these locations is specified in the address of the first

word of the calling sequence to C9ASKE. C9ASKE must have access to the
U1SICO subroutine.

1.3.20.2 Output Requirements

E, Sin E, Cos E, and the eccentric anomaly at time t, all in floating-point,
are stored in a 3-word output block. The address of the first location of the
block is specified in the decrement of the first word of the calling sequence to
C9ASKE.

1.3.20.3 Method

E i+ 1= E i E i -e Sin(E5 - M

1 - e Cos (Ei)

Iteration is terminated when convergence to 0.0001 degrees (= 0. 000017
radians) has been reached or when the maximum number of iterations has been

performed. Presently this number is set to ten.

1.3.20.4 Usage

a) Calling Sequence:

alpha

+1

+2

+3

TSX

PZE

C9ASKE, 4

L (input),, L (output)

Error return

Normal return

1-128

MC 63-4

b) Error Conditions:

c)

d)

e)

f)

g)

1) A return to alpha + 2 with 1 in the decrement of location C9ASKE
indicates that the AC overflow indicator or the divide check indi-

cator on the IBM 7094 console was turned on during execution of
C9ASKE.

2) A return to alpha + 2 with 2 in the decrement of location C9ASKE
indicates an error return from the UISICO subroutine.

3) A return to alpha + 2 with 3 in the decrement of location C9ASKE

indicates that convergence was not accomplished in the maximum
number of iterations (presently ten) allowed.

Storage Required--10410 including constants and temporary storage,

but excluding the UISICO subroutine.

Time Required--(maximum number of IBM 7094 machine cycles,

excluding the subroutine UISICO): 141810.

Accuracy--26 significant bits.

Exempt symbol--C9ASKE.

Library Identification--LBR U7ASKE.

i.3.21 SOS LIBRARY TAPE WRITER PROGRAM (LBRWR)

LBRWR prepares a library tape of utility subroutines for use with Mercury
SOS. The flow chart for LBRWR is shown in Figure 1-4.

1.3.21.1 Input Requirements

The Library Tape Writer program requires a squoze tape on A5 as input.
Each subroutine must be a separate file, and two adjacent EOF marks must be

present to signify the end of the input tape. The squoze tape may be prepared
by SOS by compiling the utility routines, in order, and stacking the squoze on
tape (SSW #6 up). SOS currently writes the EOF between jobs automatically.

1-129

MC 63-4

The input deck to prepare a squoze tape consists of:

a) JOB card (columns 16-21 containing the symbol destined to be used
with the LBR card to call in that subroutine)

CPL card

Symbolic deck of first utility subroutine

Blank card

(a) through (d) for each of the remaining subroutines

PAUSE card

The current version of SOS expects a maximum of 26 utility routines.

b)

c)

d)

e)

0

1.3.21.2 Output Requirements

LBRWR produces a library tape on A4. The tape is composed of two files:
the first file is empty; the second file contains one BCD ID record followed by
binary records (maximum of 256 words each) for the utility routines.

1.3.21.3 Method

LBRWR writes an EOF followed by a 1-word record in BCD on the output
tape. This record identifies the tape as a library tape. LBRWR then edits the

utility subroutines and writes the edited squoze information as the remainder
of the second file on the output tape. Upon sensing a double EOF on the input

tape, LBRWR writes an EOF and rewinds the output tape.

1.3.21.4 Usage (Operator's Procedures):

a) Ready SOS on A1.

b) Ready blank tapes on A2, A4, B1, and B2.

c) Ready input squoze tape on A5.

d) Ready LBRWR program in card reader.

e) Set sense switch #1 down.

f) Press LOAD TAPE button.

g) Program final stop is at 14028, with the library tape rewound on A4.

1-130

MC 63-4

BEGI_

REWIND OUTPUT TAPE,
TURN OFF EoF

AND REDUNDANCY
INDICATORS

TAKE CORE
DUMP
STOP

PRESS START
TO RESTART

TURN ON
SL 1

RDCD

WEF OUTPUT TAPE,
WRITE 1-WDID

RECORD ON
OUTPUT TAPE.

DELAY

_ REDUNDANCY

.o
TURN OFF

ALL SL

SAVE XR4

NUMCD

WORD COUNT
OF RECORD

XR4

CLAI _I

MOVE ONE WORD
OF RECORD TO

OUTPUT BLOCK

OUTPUT
BLOCK FULL

DONE MOVING
THIS RECORD

CDFIN i YES

RESTORE XR4

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Sheet 1 of 5)

1-131

MC 63-4

IOCPX .-*

IOCPN2,
0 -* TSTX

255 _ XR2,
TURN ON SL3

LOSTR t

STOCD /

I SAVE SOS

QUANTITIES
FROM PREFACE

OF SQUOZE DECK.

6-CHAR JOB ID
-_ BCD1

• HAVE TEXT _'_ NO

_ITH COMMENTARYJ

i I I I23+ H+ 2D+ FN 23+ H+ 2D+ FN
+ COMTX + NCMTS

I

SAVE IN
LOCN

TOTAL

D,V

o TOTALTAL+ 25"--'5"-:2

STDY

AC D -_ IOCPF D
/

(5

STO25

377 -* AC D

FIGURE 1-4. LBRWR

WRITE 2-WD ID
RECORD ON

OUTPUT TAPE.
1ST WD = BCD1

2ND WD= IOCPF

t
ANY HEAD

SXA1 t YES

I INITIALIZE
NO. OF
HEADS

J._

STOCD
ONE WITH HEA

1_
GOTMC T

_ NO
ANY MACROS =_-

SXA2 _ YES

INITIALIZE J
NO. OF

MACR OS

RDCD

t
DONE MACROS

YES

PROGRAM FLOW CHART

GOTBL(_

I TURN ONSL 1

RDCD >BLANK CARD

ANY MACRO "_ NOSKELETONS

sxA3 _ YE_
INITIALIZE

NO. OF
MACRO

SKELETONS

RDCD

SKELETONS 7
_. YES

GOTIN |_

ANY N NO

NTRODUCTION

SXA4 t YES_

J INITIALIZE I
NO. OF

INTRO. WDS

_

< oco>
DONE INTRO _.

,J,_ YES

(Sheet 2 o[5)

1-132

MC 63-4

DODIC(_

DICTIONARY

SXA5 _ YES

INITIALIZE I
FOR NO. OF

DICTIONARY

_JI.
-I

RDCD

i
STOCD ,_

f

__ DONE _yy
DICTIONARY

JL_ ES
DOFTN |--

NY FOOTNOTES _-_-

SXA6 t YES

J INITIALIZE NO. JOF FOOTNOTES

RDCD

STCD

!
J

.._ DONE _y
FOOTNOTES

.I._ ES

DOCOM(__

f ANYNON

THNK3 _ YES

INITIALIZE NO.]
OF WDS OF NON-

COM TEXT

NO

RDCD

TEXT WITH

NO

STOCD

YES

DONE NON-

COM TEXT

fES

COMWI

TEXT NO

COMMENTARY

SXA7 t YES

J INITIALIZE NO. JOF TEXT WDS

RDCD

STOCD

(_ DONE YES TURN ON SL1,
COM. TEXT XR2 + 1-_ XR2

FIGURE 1-4. LBRWR PROGRAM FLOW CHART (Sheet 3 orS)

1-133

MC 63-4

-:XR2+ 256 _ XR2

-, IOCPN2 D

PREV

INITIALIZE

IDCD2 +
XR2

BKA
IOCPN2 "-_

NEXT WORD
OUTPUT
BUFFER

PRES (_

INITIALIZE
XR2 &

LOCN PREV

TSTX : 0

TSTS2

(TIXCI_ SL2ON __

_ YES

IOCDX "-*
IOCFN2,

XR1 -_ TSTX

l XR2 + I _ XR2

TRCV

"_NO /f "XYE S { \

SL3ON _REDUNDANCY j)_t<i _K)

YES t NO_

OUTPUT
_- BUFFER TO

OUTPUT TAPE

XBBLK I

REINITIALIZE
SELECTION OF

OUTPUT

BUFFERS

t
ALL 3 BUFFEI_S Y_..E_USED

I
SXAXB

I SAVE XR2

TO CHOOSE
OUTPUT
BUFFER

F IGU RE 1-4.

REINITIALIZE
XR2 TO USE

BUFFER 1
AGAIN

I

LBRWR PROGRAM FLOW CHART (Sheet 40[5)

1-134

MC 63-4

(

SAVE XR4,
DELAY ON

CHANNEL A

f
EOF

GOON _ NO

CHOOSE &
CLEAR

PROPER

BUFFER

READ ONE
RECORD FROM

INPUT TAPE
& DELAY

(
l

EOF

SL ON
!

CALLT t NO

J SAVE CHECKSUM J& WORD COUNT
OF RE_ORP

NO

WORD COUNT : 0_

COMPUTE
CHECKSUM
& COMPARE

OUT

DONE

WEF & REW
OUTPUT

TAPE

YES

READ NEXT
RECORDINTO

SAME BUFFER
& DELAY

._(_REDUNDANCY)

CKSM ERROR

CKSER _ YES

PRESS START --I
TO IGNORE

FIGURE I-4. LBRWR PROGRAM

SV4CD

RESTORE .XR4 J

FLOW

NO

CHART (Sheet 5 o[5)

1-135

MC 63-4

Section 2

SIMULATION PROGRAMS

Simulation programs pretest the Project Mercury Programming System in
an environment which approximates a real-time mission. These programs are
divided into three categories: (1) data preparation programs, (2} simulated
input/output control program (SIC}, and (3) open and closed loop programs for
project personnel training.

2-1

MC 63-4

2.1 OBSERVERPROGRAM(OBSER)

Observer produces a set of pure radar observations of the Mercury space-
craft. Theseobservations are degradedto simulate random radar and trans-
mission errors and are then reformatted by the Selector and Shred programs.
Following this, the observations are used as input to the simulated input/output
control (SIC)program which feeds data to Mercury monitor in simulated real
time.

The flow chart for Observer is shownin Figure 2-1.

2.1.1 Input Requirements

A functional description of the possible inputs to Observer is given below.

a) Station Characteristics Tape (prepared by U0STCH)--contains position
of site andtype of radar.

SpaceTechnology Laboratories (STL) Tape--loaded from column
binary cards containing position/velocity vectors in B-GE coordinates
for a simulated launch. This powered flight data is provided by STL.

b)

c) Cards (read from the on-line reader)--specify all the parameters for
a run. The sequence of cards is:

I)

2)

3)

Four parameter cards containing spacecraft characteristics.

An identification card.

A card, or cards, specifying the manner in which a table of
position/velocity vectors is to be generated. There are four ways
in which this can be done:

(a) Converting STL launch data in B-GE coordinates to inertial
coordinates.

(b) Numerical integration (for free flight) starting from a given
position/velocity vector.

(c) Extending a previously generated table by firing posigrade
rockets at a specified time and then integrating.

(d) Extending a previously generated table by firing retrorockets
at a specified time and then integrating.

2-2

MC 63-4

4) A set of station cards, each identifying a particular radar site.

These cards control the reading of the Station Characteristics tape
so positional data from each site can be obtained. Radar pointing
data for each station card is calculated assuming that the space-
craft traces the path described in the table of position vectors.

5) An END card.

t_vo

A typical set of cards for obtaining launch, orbit and reentry data for the
Bermuda radars would be:

a) Four parameter cards.

b) Identification card, identifying the run.

c) STL card indicating use of STL tape data for powered flight.

d) Station card for Bermuda Verlort radar.

e) Station card for Bermuda AN/FPS-16 radar.

f) New parameter card(s}, if desired.

g) Execute posigrade (XP) card for extending flight by firing posigrade
rockets and going into free flight.

h) New station card(s), if desired.

i) New parameter card(s), if desired.

j) Execute retrograde (XR) card for extending flight by firing retrograde
rockets and returning to free flight for the reentry phase.

k) New station card(s), if desired.

1) END card.

2.1.2 Output Requirements

A listing of the possible Observer outputs includes:

a) A binary tape (B5) containing in each record a table of position/velocity
vectors. If STL data is used, the first record contains an edited ver-
sion of the B-GE data; all other records contain data in inertial coordi-

nates. There is one record for each table generated in the Observer

program.

2-3

MC 63-4

b)

c)

A BCD tape (A8) for printing off line the radar observations made at
each station, a table of position/velocity vectors, and a table of sub-

vehicle positions.

A binary tape (B6) for input to the Selector program, containing the
radar observations made at each station. This is the only optional
output and is not used unless radar reports are actually calculated.

2.1.3 Method

Observer first calculates a set of position/velocity vectors and then (using
only the position vectors) calculates radar pointing data from specified stations
to the path described in the vector table.

As indicated by the selection of cards, the vector table is obtained by:

a) A direct conversion of STL powered-flight data from B-GE-to-inertial
coordinates. This provides a one-to-one correspondence of supplied-

to-calculated vectors. The table usually provides points for several
seconds after sustainer engine cutoff (SECO).

b) Numerical integration by Cowles method, or Runge-Kutta method, using
NOCPNI, the same integration program used in the Mercury Program
System.

c) Interpolating for an initial rv (position/velocity vector) by referring to
a previously calculated table of vectors (then in memory) using a given
time. The velocity vector obtained is then incremented by the velocity
of the posigrade rockets; the position vector is left unchanged. With
this new rv corresponding to the rv after the firing of posigrade
rockets, a new table of vectors is calculated using numerical integra-
tion.

d) Obtaining an initial rv and using the retrofire program R6ATAO to
calculate an rv following the retrofire period. This rv is used as the
origin of a new table of vectors obtained by numerical integration. In
addition, a set of position/velocity vectors is obtained by linear inter-
polation corresponding to the period during which the retrorockets are
fired.

The following steps are taken for each of the stations:

a) The corresponding station characteristics block is read in from tape.

b) The distance between each point in the table and the station is calcu-
lated until the first point is reached where the distance is less than the
indicated value for the station's maximum range.

2-4

c)

d)

MC 63-4

By linear interpolation between the two consecutive table entries yield-
ing distances greater than and less than the station's maximum range,
a starting time is obtained which may be rounded to a multiple of. 1
sec, 1 sec, or 6 sec.

Proceeding from the starting time, and using time increments based

on the radar (usually six seconds or . 1 second), position vectors are
interpolated from the table entries by using six-point Lagrangian in-
terpolation. The range, azimuth, and elevation to the station are cal-
culated for each of the calculated vectors. When the calculated range

again exceeds the station's maximum range, the Observer program
calculates only the ranges to the points in the table. (Observer no
longer interpolates for extra values based on the smaller time incre-
ment of the radar observations.) When the range is again less than
the station's maximum range, the process is repeated. This process
is continued until the last value in the table of vectors is tested.

e) At this point a new station is used and the entire process is repeated.

2.1.4 Usage

In its present state, the Observer program is self-contained except for its

part in the SHARE Operating System (SOS).

Parameter Cards--Format and Quantities (all have P in column one)

* CARD COLUMN
* 1 3-17
* 1 19-33
* 1 35 -49

* 1 51-65
* 1 72-72
* 2 3-17
* 2 19-33
* 2 35-49

* 2 51-65

* 2 72-72

* 3 3-17

* 3 19-33
* 3 35-49
* 3 51-65

* 3 72-72
* 4 3-17

* 4 72-72

QUANTITY
Pitch Angle

Cant Angle
Thrust of Retros

Greenwich Hour Angle SX. XXXXXXXX,

Card Number (i)
Orbit Weight SX. XXXXXXXX, SXX
Reentry Weight SX. XX_XXXXX, SXX
Retrograde Weight SX. XXXXXXXX, SXX
Retro Burn-out Weight SX. XXXXXXXX, SXX
Card Number (2)
Post Escape Rocket Weight SX. XXXXXXXX, SXX
Spacecraft Area SX. XXXXXXXX, SXX
Roll Angle SX. XXXXXXXX, SXX

Yaw Angle SX. XXXXXXXX, SXX
Card Number (3)
K. Mute, Density Mutila- SX. XXXXXXXX, SXX
tion Coff.

Card Number (4)

FORMAT UNIT

SX. XXXXXXX_, SXX DEG.

SX. XXXXXXXX, SXX DEG.

SX. XXXXXXXX, SXX LBS.
SXX RAD.

LBS.
LBS.
LBS.

LBS.

LBS.

SQFT
DEG.
DEG.

NONE

2-5

MC 63-4

IDENTIFICATION CARD
* 1-2 ID
* 3-3 Blank

* 4-72 Any Desired HOL. Informa-
tion

XX HOL.

CARD FORMAT FOR STL INPUT

1-2

4-5

7-21

41-41

43 -43

ID

STL Tape File Required

Time of Launch (GMT)
RV Table Wanted -1

Output GMT - 0, Elapsed - 1

XX HOL.

XX INT.

SX. XXXXXXXX, SXX MIN.
X INT.
X INT.

CARD FORMAT FOR RV INPUT

* 1 1-2
* 1 4-18

* 1 20 -34
* 1 36-50
* 1 52-66
* 1 68-68
* 1 70-70
* 1 72-72
* 2 1-15
* 2 17-31
* 2 33-47
* 2 49 -53
* 2 55-56
* 2 58-58
* 2 60 -63
* 2 65-68
* 2 70-70
* 2 72-72

RV

Time of Launch (GMT)
X -- Vector

Y -- Vector

Z -- Vector
RV Table Wanted - 1

Output GMT - 0, Elapsed - 1
World Map Wanted - 1
VX -- Vector

VY -- Vector

VZ -- Vector
Anchor Time GMT

Integration Interval
* M/S Code 1-Sec., 0-Min.

Back Integration
Forward Integration
Drag Not Used - 1, Used - 0
Runge-Kutta Used - 0,
Cowell - 1

XX HOL.

SX. XXXXXXXX, SXX MIN.
SX. XXXXXXXX, SXX M.U.
SX. XXXXXXXX, SXX M.U.

SX. XXXXXXXX, SXX M. U.
X INT.
X INT.
X INT.

SX. XXXXXXXX, SXX M.U.

SX. XXXXXXXX, SXX M.U.

SX. XXXXXXXX, SXX M. U.
XXXXX *

XX *

X INT.

XXXX *

XXXX *

X INT.

X INT.

2-6

MC 63-4

EXTEND RETRO CARD

1-2
4-4
6-6

8-8
10-24

26 -27
29 -32
39-39

* 41-41
* 43-43
* 45 -59

* 61-61
* 72-72

XR

Drag Used - 0, Not Used - 1
No. of Rockets Fired
1 - No. One
2 - No. Two
4 - No. Three
3 - No. S One and Two
5 - No. S One and Three
6 - No. S Two and Three

7 - No. S One, TWo and Three
* M/S Code 1 - Sec., 0 - Min.

TTF Retro No. One, Elapsed
Integration Interval

Forward Integration
B - By Pass Interp., Blank
Interpolate
RV Table Wanted - 1

Output GMT - 0, Elapsed - 1
Long. of Impact

World Map Wanted - 1
Runge-Kutta Used - 0,
Cowell - 1

XX HOL.
X INT.
X INT.

X INT.

SX. XXXXXXXX, SXX SEC
XX *

XXXX *

X HOL.
X INT.
X INT.

SX. XXXXXXXX, SXX RAD.
X INT.

X INT.

EXTEND POSIGR. CARD

1-2
4-6
6-6

8-8
10-24
26 -27
29-32
39 -39

41-41
43-43
51-61
72-72

XP

Drag Used - 0, Not Used - 1
No. of Rockets Fired 1, 2 or 3
* M/S Code 1 - Sec., 0 - Min

TTF Rockets, Elapsed
Integration Interval
Forward Integration
B - By Pass Interp., Blank
Interpolate
RV Table Wanted - 1

Output GMT - 0, Elapsed - 1
World Map Wanted - 1
Runge-Kutta Used - 0,
Cowell - 1

2-7

MC 63-4

STATION REQUESTCARD

* CARD COLUMN

* I 1-1

* 3-4

* 6-20

* 22-36

* 38-38

* 40 -40
* 42 -42

* I = 1,33
* END CARD

QUANTITY FORMAT
S Card Code X HOL.

Desired Station, No. of XX INT.

Max. Range of Radar at Sta. SX. XXXXXXXX, SXX SEC.
No. of Seconds Betw. Obser-

vations SX. XXXXXXXX, SXX SEC.

O - No Rounding of Interpo-

lated Time, X INT.
1 - Round to Nearest .1 SEC

2 - Round to 1 Second

3 - Round to 6 Seconds

Output GMT - 0, Elapsed - 1 X INT.

On Last S Card Only,
0 - No Other

S Cards Are Expected, 1 -
Add. S

Cards May be Used X INT.

Col. 1-3 END

TYPICAL SET UP FOR DATA CARDS

P -3. 40000000, +01 +I. 35000000, +01 +i. 08260000, +03 +0. 00000000, +00 1 MA-

P +3. 03000000, +03 +2. 65294000, +03 +2. 79258000, +03 +2. 94449000, +03 2 MA-

P +3. 03600000, +03 +3. 02700000, +01 +0. 00000000, +00 +0. 00000000, +00 3 MA-

P +3.00000000,+01 4 3XD

ID MA9 3 X DRAG

RV +0.00000000, +00 +3.44078309, -01 -8.07763621, -01 +5.277 85236, -01 1 1 IMA9

+8.62429042,-01 +4.66370198,-01 +1.52504481,-01 6 1 0 3 204301MA9

S 01 +3. 00657150 -01 +6.00000000,+00 3 1

S 02 +3. 00657150
S 03 +3. 00657150
S 04 +3. 00657150
S 05 +3. 00657150
S 06 +3.00657150
S 07 +3. 00657150
S 08 +3. 00657150
S 09 +3.00657150
S 10 +3. 00657150
S 11 +3. 00657150
S 12 +3.00657150
S 13 +3. 00657150
S 14 +3. 00657150
S 15 +3. 00657150

S 16 +3. 00657150

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

+00 3 1
+00 3 1

+00 3 1
+00 3 1
+00 3 1
+00 3 1
+00 3 1

+00 3 1
+00 3 1
+00 3 1
+00 3 1

+00 3 1
+00 3 1
+00 3 1
+00 3 1

2-8

MC 63-4

S 17 +3.00657150

S 18 +3.00657150

S 19 +3.00657150

S 20 +3.00657150

S 21 +3.00657150

S 22 +3.00657150

S 23 +3.00657150

S 24 +3.00657150

IDMA-9 3X Drag

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000

-01 +6.00000000
-01 +6.00000000

-01 +6.00000000

Reentry

+00 3 1

+00 3 1

+00 3 1

+00 3 1

+00 3 1

+00 3 1

+00 3 1

+00 3 1

XR 7 1 +1.22362000,+05 4 8888 1 1 +3.20355181,+00
END

1 MA-

OPERATING INSTRUCTIONS

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

TAPES

A1

A2

A3
A8

SOS Sys. Tape

Blank (SOS)

Job Tape

BCD Output - RV Table, World Map, Observations

Print Under Program Control

B1 Blank (SOS)

B2 Blank (SOS)

B5 Blank Intermediate

B6 Blank Binary Output, Observations

Format per 8 Word Record

Word 1 - Address, Internal Sta. Number

Decrement, Set Number
Words 2 and 3

-Time Asso. With Observations. BCD Seconds

Word 4 -GMT for Observation. Fixed Binary Seconds
Word 5 -Elapsed Time for Observation. Floating Binary

Word 6 - Slant Range. Floating Point Binary

Word 7 - Azimuth Floating Point Binary

Word 8 - Elevation. Floating Point Binary
B7 Station Characteristics Tape Input
Sense Switches

SSW No. 4 Down on-line Print of A8

2-9

MC 63-4

REWIND TAPES

0 _ PAGENO
0 -* SETNO
0 -_ NOPCRD
0 _ TFORSR
1 _ I ASN_

READ
INPUT
CARD

INIT. FOR STORAGE

OF S CARDS

BUFSV3 (A) -_

BUFSV2 (A)

WAS CARD A
PARAMETER (P)

C._,RD

YES

WHICH
(P) CARD >

NO.

2

PARMC 2

P CARl _ 2

STORE INPUT

NOPCRD + 1 -_ NOPCRD

PARMC 1

STORE IN

_PCRD + 1 _ NOPCRy

PARMC

PARMC3

(P) CARD NO. "_ 4

STORE INPUT

NOPCRD+ 1_ NOPCRD

I PARMC 6

P CARD #4

STORE INPUT

NOPCRD + 1 -, NOPCRD

.!v

PARMC4

NORCRD:4

,, _ _PARM_5 I

fCOMPUTEDRAG_"_J

[AND RETRO-

FIRE CONSTANTS I--

_.. (T6ATAO) J

FIGURE 2-1 . OBSERVER PROGRAM FLOW CHART (Sheet 1 o[7)

2-10

MC 63-4

_IDCRD

(NORCRD:4)

,s,T..IDENTIFICATION)

CARD J

IS IT AN

END

CARD

NO
TRPC

IS IT AN
RV

CARD

ERROR

FOUR PARAMETER

CARDS HAVE NOT

BEEN READ

YES

J STOREIN

ID AREA FOR

PRINTING

HEADING ON

EACH PAGE

RNC

READINPUT CARD

WEFOT

WRITE EOF ON

OUTPUT TAPES

REWIND INPUT

AND OUTPUT TAPES

READINPUT

CARD MUST

BE SECOND

RV CARD

DCMICt INTSR

INTEGRATE FOR POSITION

AND VELOCITY VECTORS

STORE IN TNINT1

TABLE

PRID

l PRINT PAGE HEADING

(P) CARDS'INPUTS I JSETNO+I-_SETN6J j
INPUT RV OR BURNOUT _ PAGENO+ 1-_

COMPUTED DRAG CONST. j j PAGENO I J
IF REENTRY, PRINT

IP I T6ATAO TABLE

CONVERT TIME I REFERENCES
TO FIXED POINT DEC MICRO

SECONDS, AND REPLACE
ORIGINAL UNITS

WlNT

CAL. NO. OF I I

HENTRIES IN THE

TNINT1 TABLE

WRITE TNINT1

TABLE ON TO

TAPE B5

CONVERT At

TO FLOATING

POINT MIN

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 2 of 7)

2-11

MC 63-4

COMPUTE

QUANTITIES

FOR BCD

OUT PUT

_G_AIV_AN TO TAPE A_"_
ITE THE ORBIT \

TABLE, R & V
G. AZIMUTH, ;

MA; LON, LAT, /

HEIGHT J

RSTC

TFORSR : 0

J READ INPUT CARD J

RSTC0

SCRDSV + i

IS IT A _'_ YES/'_

S

CARD

! NO
_ RSTCS

i=0)

_ RSTC4

.R,NG,NPUT"
ARD STORED IN

I

RDSV+ i TO BUF]

ORAGE BLOC V

I TSTAC

NO (IScARDITsA

TFORSR _ 0)

t
i=i+12)

READ DESIRED STATIONJ J

DATA FROMSTATION J-_
CHARACTERISTICS I I

TAPE (B7) I I

RESET TIME

STORE CONTENTS

OF S CARD

STBERG

INITIALIZE

FOR

R, A, E

CALCULATIONS

FIGURE 2- 1. OBSERVER PROGRAM FLOW CHART (Sheet 3 of 7)

2-12

MC 63-4

_IDCRD

NORCRD:4)

(

rI
I >

('s'TAN) YEsIIDENTIFICATION

CARD

I_EN°C I
IS IT AN _ _

END

CARD

IS IT AN _'_TRV v_ _

RV
CARD

INTSR

NOCPNI

INTEGRATE FOR POSITION

AND VELOCITY VECTORS

STORE IN TNINT1

TABLE

PRINT PAGE HEADING

(P) CARDS' INPUTS

INPUT RV OR BURNOUT

COMPUTED DRAG CONST.

IF REENTRY, PRINT

IP I T6ATAO TABLE

ERROR

FOUR PARAMETER

CARDS HAVE NOT

BEEN READ

STOREIN

ID AREA FOR

PRINTING

HEADING ON

EACH PAGE

RNC

READINPUT CARD J

WEFOT

WRITE EOF ON

OUTPUT TAPES

REWINDINPUT

AND OUTPUT TAPES

READINPUT

CARD MUST

BE SECOND

RV CARD

I
DCMIC

CONVERT TIME I REFERENCES

TO FIXED POINT DEC MICRO

SECONDS, AND REPLACE
ORIGINAL UNITS

PRID WlNT

_1- CAL. NO. OF m

JSETNO+ 1 __ SETN61 J ENTRIES INTHETNINT1TABLE

L PAGENO + 1 -_

J PAGENO j j WRITE TNINT1
TABLE ON TO

TAPE B5

CONVERT _t

TO FLOATING

POINT MIN

FIGURE 2-1. OBSERVER PROGRAM FLOW CHART (Sheet 2 of 7)

2-11

MC 63-4

C i=O

COMPUTE

QUANTITIES

FOR BCD

OUT PUT

_G_MA N TO TAPE A_'_
ITE THE ORBIT \

TABLE, R & V
G. AZIMUTH, ;

', LON, I_A'I', /

HEIGHT J

RSTC

C "'_ORSR:O)

NO

I

READ INPUT CARD J
I

RSTC0

SCRDSV + i

1

CARD

1:o
RSTCS

C)
RSTC4

_ BR,.O,.PUT_'_.
ARD STORED IN

I

RDSV + i TO BUF]

TORAGE B L OCJ_.J

TSTAC

C IS IT A

S

CARD

TFORSR J 0)

t
i=i+12)

READ DESIRED STATION H
DATA FROM STATION

CHARACTERISTICS I I
TAPE (B7) I I

RESET TIME

STORE CONTENTS

OF S CARD

STBERG

INITIALIZE

FOR

R, A, E

CALCULATIONS

FIGURE 2- 1. OBSERVER PROGRAM FLOW CHART (Sheet 3 of 7)

2-12

} MC 63-4

(_ RANGE

I RELOCATE X, Y, Z I

FOR RANGE

CALCULATION

COMPUTE

RANGE (AND

E LEVAT ION)

COMPL

OMPUTED RANGE) : >

(STATION'S MAX.)J

f *ASPIRST
 ENTR INTNINT,
_TABLE USED FOR

CALCULATION

_ No

CURRENT TIME (GMT)-*
MAX. TIME (TK) USED IN

INTER PO LATION

LINTP

CALCULATE STARTING TIME (t s) FOR

STATION'S R, A, E AS A FUNCTION

OF COMPUTED RANGE,
STATION MAX., CURRENT TIME

)

I MODIFY I

ADDRESS OF

X,Y,Z

USED J

t
--I STORE SLANT RANGE

r I CURRENT TIME
INCREASED BY At

_PS1

_ I. SLT

MULTIPLE OF 60 • ts • l0 s -_ t s =
SOME UNIT

AT = TIME
BETWEEN _ YES SLT|

REPORTS] _ ,_+ ..1 .105__t .._

t SLT2

A MUL. OF 1. S (6Ors + 11- 105-_t s _-

SLT3

FIGURE 2- 1. OBSERVER PROGRAM FLOW CHART ('Sheet 4 of 7)

2-13

MC 63-4

©
t TOO LARGE

S

t

(Mc/INTERPOLATE

FOR X, Y, Z

A t TIME t s

SETR

SET UP DATA

BLOCK FOR R, A, E
COMPUTATION

RAE

A1 LSC1
COMPUTE RANGE,

AZIMUTH ELEVATION/

<

()-t s :TK

> COMP2

> REPHA

SET INDEX REGISTER
TO.GET NEXT SET

OF X, Y, Z t

ADN /

ADD LOCAL
STATION

DISTORTIONS

TREP

CONVERT GMT TO
FIXED PT. SEC. AND

ELAPSED TIME TO
FL. PT. MICRO-SECONDS

FOR BINARY OUTPUT

BY OPTION CONVERT
EITHER GMT OR
ELAPSED TIME

TO BCD

WRBCD

FORMAT BCD OUTPUT
WRITE OUTPUT ONTO

TAPE A8

I WRBIN

FORMAT BINARY OUTPUT I

WRITE OUTPUT ONTO J

TAPE B6 J

t AT-_ t)t$ $

FIGURE 2.1. OBSERVER PROGRAM FLOW CHART (Sheet 5 of 7)

2-14

MC 63-4

(IS IT AN

STL CARD

IS IT AN
XR CARD

NO

IS IT AN
XP CARD

_:RP1

/ ,cINTE RPO LATE

FOR R, V AT
DESIRED FIRING

TI ME t

YES
EADSTLDATAFROMTA

_ / AT.WR,TESED,TEDVERS,ON\
- \ON TAPEBS.CONVERTSDATA/

\ TO,NERT,ALCOORD,NATES/
PLACE IN TNINTI /f

CALCULATE RV AFTER

POSIGRADE FIRE "_ =i_ 0

['. MpVp7

(

POS1

RETR

COMPUTE TIME TO
FIRE FOR EACH DESIRED

RETRO, AND RETRO
PRINT-OUT INFO.

/ i
COMPUT

POS/VE L VECTOR

AT BURNOUT

NO

XRP

STORE INPUT

FOR XR OR XP

CARD CONVERT

TIMES TO SECONDS

INTER POLATIONJ

XRP3 _ YES

PLACE FIRST ENTRY

IN THE TNINT1

TABLE IN THE
INTERPOLATION

OUTPUT AREA

_ CORV

UPDATE

POS/VEL TP

NEXT WHOLE
SECOND

FIGURE 2- 1. OBSERVER PROGRAM FLOW CHART (Sheet 6 of 7)

2-15

MC 63-4

I
l

NOCPNI

INTEGRATE FOR
POS/VE L

VECTORS

POS12

SET UP INPUT
FOR NOC PNI I

(__ RETR2

SET UP INPUT
FOR NOCPNI

< oc,N,>INTEGRATE FOR
POS/VEL
VECTORS

LINEAR INTERPOLATION

BETWEEN PRE- AND
POST-RETROFIRE RV'S

NO

(__ ERROR

PRINT ON LINE
LOCATION

OF THE ERROR
DUMP

ADRTM

REFINE DESIRED

FIRING TIME t

FIGURE 2- 1. OBSERVER PROGRAM FLOW CHART ('Sheet 7 o[7)

2-16

MC 63-4

2.2 HB SUBROUTI NE

HB assumes the STL launch data to be on a binary tape in a variable num-
ber of 24-word records, followed by an end-of-file. The program converts
launch (powered flight) data from B-GE coordinates in fixed-point STL units to
inertial coordinates in floating-point Mercury units. The output is placed in
the integration table (TNINT_. An average mean (At) is computed and used as
the base value for this integration table.

The flow chart for HB is shown in Figure 2-2.

All records from the binary input tape are read and a check is made of the
12-bit folded checksum. The folded checksum constitutes part of the first word
of each record. Since each item of STL data is a 24-bit word, the 12 bits in

positions 24 through 35 are always zero. Items 2 through 10 are the values HB
uses.

2.2.1 Input Format

1. Logical word from column binary card

2. Discreet quantities

3.

4.

6. T E

7.

8.

9.

10. Special B-GE checksum

11-24. Not used by HB

2-17

MC 63-4

2.2.2 Output Format

TNINT1 + _

+ 1 At

+ 2 T O

+3 T
n

+4 X

+5 Y

+6 Z

+7

+8

+9

+ 10

2

X

2-18

MC 63-4

SAVE REGS. FOR J
RETURN TO IMAIN PROGRAMS

_m

go= T L oJ+ ko+XGB- K2_

PICK UP]

DATA CUT-
OFF POINT FROM

MAIN ROUTINE

READ AND J

CHECK A
TAPE RECORD.

EOF

NO

J SAVE k;SHIFT

OUT TRAILING
ZEROS ON EACH

WORD OF RECORD

i

IS TIME (m)

ASSOCIATED
WITH RECORD

=O

½ No

IS tn = t n- |

-- Y ES

COMPUTE THE J
NUMBER OF ENTRIES

IN OUTPUT TABLE

t
C(TNINT1) = + o_

C(TNINT1 + 121:t_ z'C(TNINT1 +

WHERE t Z= ToL+AL

C(TNINT1 + 3)= TN WHERE

TN = TOL + A L+ (N-l) X A t

SKIP THIS J
RECORD

PLACE J

RECORD INTO J..

OUTPUT BLOC_

/%,L = .464 SEC.

TOL = TIME OF
LAUNCH

K IS CHOSEN SUCH

THAT (- 2rr< q_o< 2_)

i

l owoITO TABLE:
TNINT1

t
"_oF" ,sTH,S "_

THE v
COMPONENT _

THE VECTORJ

t YES

PLACE COMPLETE
VECTOR INTO

TNINT1

©
-f

J COMPUTE I

COS 8, ,in8 I
SET UP CONVERSION I

'x",j
SET UP LINEAR (FI) I l

OR VELOCITY (F2) I
CONVERSION J

FACTOR I

t
FI OR F2 TO

CONVERT TO
MERC BASE

0=_°+ (n- 1)At I

F1 = .955765

F2 -- 1.022885

x,
Y,_-l.,.eoo.ellOlF,
z, mo oJu J

*, _.e-_.,._p 1
i --Jlin co,OllO/F2

_, Lo OIL,J

FIGURE 2-2. HB FLOW CHART (Sheet l o[2)

2-19

MC 63-4

VR= ()(+ YoJ)2+ (_f- Xoj)2+ Z2

H R=_'X 2+ y2+ Z2_R_rt h

HAS
NO'TOWER SEPARA-_

TION OCCURRED J

, YET? J

I IRELATIVE
VELOCITY

BY CHECKING

DIFFERENCES, DE-
TERMINE WHETHER

SECO HAS OC-
CURRED AT THIS PT

t

(sEc OCCURRED

YES _ NO

| CUTOFF _ ,.-(POINT BEEN]

/ t _ .o

SET ENDING
TIME OF
TNINT1

l

RETURN)

HAS UNIT (OF CUTOFF
BEEN

REACHED

YES

)

NO

t
PROVIDE

3 ADDITIONAL

r e yes.

HAS TOWER
SEPARATION

OCCURRED
YET?

YES

SET ENDING
TIME OF

OUTPUT TABLE
(TNINT1)

1
_ RETURN)

FIGURE 2-2. HB FLOW CHART (Sheet 2 o[2)

2-20

MC 63-4

2.3 HC SUBROUTINE

HC performs a 6-point Lagrangian interpolation. It consists mainly of a
control program around the SHARE routine INTP2. If a 6-point Lagrangian in-
terpolation cannot be performed, a simple linear interpolation is executed.

The flow chart for HC is shown in Figure 2-3.

The input to the subroutine is the time of the desired position and velocity
vectors; output is the vectors corresponding to the time requested.

2.4 RAE SUBROUTINE

This subroutine applies errors to R, A, E's and prepares a profile tape and
a listing tape. The flow chart for RAE is shown in Figure 2-4.

2.5 RFBRAE SUBROUTINE

RFBRAE is an output routine. Its major purpose is to operate with station
characteristics information. The operation data consists of range, azimuth and
elevation. Azimuth and elevation data is converted to degrees; range data is

converted to yards. An option is incorporated in this routine which allows
printing this information on-line or on the listing tape. Errors can be intro-
duced in this routine due to local vertical, refraction and boresight corrections

by requesting specific values from the station. This interrogation is accom-
plished in the station characteristic block.

The flow chart for RFBRAE is shown in Figure 2-5.

Notes: This information pertains to Figure 2-5.

K = 1.161466225 x 10 -3

Ng:

C2:

C3:

D2:

Modulus (N-l)-27th word of station characteristics block.

Local vertical deflection--fifteenth word

Local vertical deflection--sixteenth word

Boresight azimuth correction--thirty-third word

Boresight elevation correction--thirty-second word

Inertial longitude at reference time--nineteenth word

2.6 RNRCRD SUBROUTINE

The RNRCRD subroutine reads the integration tape into storage.
chart for RNRCRD is shown in Figure 2-6.

The flow

2-21

MC 63-4

ERROR

R= (Rit I- Ri)At+ Ri

PICK UP LOCATION
OF R, V TABLE AND
TIME FOR INTERPO-

LATED R, V. INITIAL-
IZE REFERENCES

__DOES THE

I / REQUESTED TIME \
I_ I LIE BETWEEN THE

BEGINNING AND J
I \ ENDING TIMES,]

• _2F R, V TABLEJ

COMPUTE WHERE
TIME REQUESTED

LIES IN r, v
TABLE

COMPUTE
TIME DIFFER-

ENTIAL
_T)

- [2 r,v's BEFORE
' THE REQUESTED
I _ T I V

t YES

2 r, v's AFTER
THE REQUESTED

r, v

i YES

PLACE THE NEXT
COMPONENT

INTO WORK AREA

FOR(INTP_
ROUTINE

INTP2

STORE
RESULTS AND
PLACE NEXT
COMPONENT
INTOINTP2

WORK AREA

FIGURE 2-3. HC FLOW CHART

)

2-22

MC 63-4

(" WAS
REFRACTION

REQUESTED

SET
INDICATOR

FOR RFBRAF

RFBRAF /

PREPARE
8-WORD

BLOCK FOR
PROFILE

WRITE
8 WORD

RECORD ON
PROFILE

1. INTERNAL
STATION NUMBER

2. TIME (BCD
SECONDS)

3. TIME (BCD
SECONDS)

4. TIME (BINARY
SECONDS)

5. TIME (FLOATING-

POINT MILLISECONDS)

6. SLANT RANGE
(MERCURY UNITS)

7. AZIMUTH (RADIANS)

8. ELEVATION (RADIANS)

FIGURE 2-4. RAE FLOW CHART

2-23

MC 63-4

J CONVERT AZIMUTH

AND ELEVATION
TO DEGREES AND
RANGE TO YARDS

"RE" NO _[CORRECTIONS

REQUESTED J v I

YES

J Eg= E]

I E'= Eg-Ng Cot Eg J

I dE= E-E" I

C iaEI :o.ooos

I KN..___.LRg= R+ Sin Eg

>

OUTPUT

R, A, E

J Ag= A J

f
():Eg • rr/2

_,

J _E=_co.,. I-_. Sin Ag

. dEg= dE I1 + Ng CSC 2 Eg

_'_J AE = "_(_)2 + (_')2 J

FIGURE 2-5. RFBRAE FLOW CHART (Sheet 1 o[2)

2-24

EA= Eg+AE

MC 63-4

AA = _) SinAg + _ CosAg
Cot Eg - A E

l
RA = Rg

AA = AA + Ag

l
RR= RA

AR = AA - C 2 -: D2

ER = EA-C 3

OUTPUT
CORRECTED

R, A, E

RETURN)

FIGURE 2-5. RFBRAE FLOW CHART (Sheet 2 of 2)

2-25

MC 63-4

r
READ ONE

RECORD INTO

TNINT1

END)
OF

FILE

TAPE CHECK_

NO

READ THE
FIRST 8

WORDS OF
NEXT RECORD

YES

YES

f HAS THIS)

HAPPENED 3

--_. TIMES ONTHISRECORD

YES

NO

END OF FILE

.o
BACKSPACE

ONE
RECORD

YES

I SET 8 WORDS

FOR NEXT
RECORD =
INFINITY

FIGURE 2-6. RNRCRD FLOW CHART

2-26

MC _

2.7 RVCAL SUBROUTINE

This subroutine calculates position and velocity quantities for the simu-
lated trajectory. Input to the routine is a table of position and velocity vectors,
and the output consists of tables of values on a listing tape. During the orbit
phase, one table of orbital elements is also provided.

The equations used in obtaining the trajectory quantities and orbital ele-

ments appear on the following pages.

The trajectory table includes values for:

The six vector components (x, y, z, _, _, z)

Range magnitude (R)

Inertial velocity (VI)

Relative velocity (VR)

Inertial gamma (_,i)

Relative gamma (_, R)

Inertial azimuth (A I)

Relative azimuth (AR)

Geocentric latitude

Geodetic latitude

Relative longitude

Inertial longitude

Altitude above an oblate or spherical earth.

The orbital element table includes:

Semimajor axis (a)

Mean motion (n)

Period (T)

2-27

MC 63-4

Eccentricity (e)

Eccentric anomaly (E)

Mean anomaly (M)

Inclination angle (I)

Argument of the ascending node (_)

Argument of perigee (u_)

Longitude of perigee (L)

True anomaly (TA)

Apogee (A)

Perigee (P)

Constants which are used in the equations:

R (radius of the earth) = . 999251039 Mercury unitse

Ve (rotational velocity of earth) = . 058833543 Mercury time units

Trajectory Calculations

R =/x 2 + y2 + z 2

J_ .2 .2VI = 2+y +z

Y ¢¢e' _ _r-X_e =XR =x+ ' R = ' ZR

vR = + R)2+ (R)2

YI = Sin-1 xx + y_ + z_
R VI

r V R

YR = sin-1 R V R

2-28

MC 63-4

= Cos -I
R_. - zV ISinTi.

VI CosYi x24_+y2

A R = Cos -I Rf_R - zV R SinTR

VR Cos7 R

Latitudes, longitudes and heights are obtained by use of A3MSCP (see
MC 63-3).

Orbital Calculations

e cos E = R (VI)2 _ 1

R
a=

1- e Cos E

3
n=a 2

T 2,r
n

• v

e Sin E =_r a

e =J(e sin E) 2 + (e cos E) 2

-1 e sin EE =tan
e cos E

M= E -e sin E

Irx W

*_(rxv) • i *_ xv) • *
,R ,R z

'-'4 -,,b

_ (rxv) •

Jp--

2-29

MC 63-4

Cos i = R
Z

\cos i/

R R
Sin __ x L

-SinI' cos _=-Si--nI

-i [sin 12_
= tan \cos _]

_-= cos E -*
R r+ _/aSLn E_

r + (_/a(cos E -e) -_

(i- e2)1/2 v

Cos w = Cos QPx + Sin _Py

Sin w = -Cos DQx - Sin _Qy

w = tan-i (.sin w 1

L=_ +a_

T A = tan -iI_ 1

e

P = (-_/-Re

2-30

MC 63-4

2.8 SELECTOR PROGRAM

The Selector program selects a flight profile for the spacecraft from a

given set of radar observations and applies the following parameters to the
radar reports:

a) Begin-transmission mark

b) End-of-transmission mark

c) Valid or invalid transmission identification

d) Random error code

e) Pathological error code

f) Transmission error code

g) Transmission delay

h) Bias error code

The flow chart for the Selector program is shown in Figure 2-7.

2.8.1 Input Requirements

The following programs are used with the Selector program: RCDI,
GLFILE, DFLN, and CSTI.

A binary input tape (output from Observer program) is also required and
its format is as follows:

Word 1--address portion of the word contains the internal station
number of the radar installation.

Word 2 and Word 3--time of observation associated with radar read-

ings. The time is the total number of seconds in BCD.

Word 4--total number of seconds since midnight preceding launch, in

floating-point binary

Word 5--total number of milliseconds since launch, in floating-point

binary

Word 6--slant range, in floating-point binary

2-31

MC 63-4

Word 7--azimuth, in floating-point binary

Word 8--elevation, in floating-point binary

Input cards (called station request cards) are required. These station
cards control the output and various identifications, tags, and delays which are

applied to the radar reports from the requested station. At least one input card
is required per station requested; however, there is no limitation on the num-
ber of cards in the station request deck. The last card of the station request

deck must be an END card (END punched in columns 1-3). The station request
card format is as follows (unless otherwise specified, all leading zeroes are to
be punched):

Columns:

1-2 The subchannel of the DCC to be used.

3-4 The internal station number.

7-15 The BCD time associated with the first observation desired.

The columns are to be punched as follows:

xxxxxx.xx Any leading zeroes are left blank.

17-25 The BCD time associated with the last observation desired.
Punch columns the same as shown above for columns 7-15.

27 M code: the m code is used to tag the report with a begin-
transmission or end-of-transmission mark and a valid or
invalid-data identification.

29 -30 Transmission error code.

32-33 Pathological code.

35-36 Random error code.

(NOTE: The random, transmission, pathological and bias

error codes explained in the Shred program write-up.)

38-52 The transmission delay desired for this station, in floating-
point milliseconds.

+ X. XXXXXXXX, +Y'_

2-32

MC 63-4

Columns:

65-66

67-68

70-71

Type of radar: punch H for high-speed or leave blank if
low-speed.

Set number associated with the station requested.

Bias error code.

The station request cards must be in sequence by set number.

2.8.2 Output Requirements

A binary output tape is generated and is used as input to the Shred program.
Each tape recorded contains 800 words, eight words per logical record. The
logical record format is as follows:

Word 1--the decrement contains the transmission error code.

Bits 23 to 26 contain the pathological error code; bits 28 to 32 con-
tain the random error code; bit 33 represents the valid or invalid

identification (bit represents valid data); bit 34 represents the
start-of-transmission tag; and bit 35 represents the end-of-

transmission tag (bit indicates presence on the latter two tags).
Bits 8 to 11 contain the bias error code.

Word 2--time of receipt of the first character by the computer, in
milliseconds, binary integer.

Word 3--subchannel of DCC, binary integer

Word 4--time of observations in BCD:

xx Hrs xx Min xx Secs

Word 5--internal station number, binary integer

Word 6--slant range, in floating-point yards

Word 7--azimuth, in floating-point degrees

Word 8--elevation, in floating-point degrees

High padding is used in the last tape record.

2-33

MC 63-4

2.8.3 Method

The noise and errors injected into the data fall into four classes; numerous

variations are possible within each class. The four classes are:

a) Random errors--random noise generated by the radar set in making an
observation.

b) Transmission errors--the random noise introduced by the transmission

system.

c) Pathological errors--the nonrandom failures which creep into the sys-
tem to cause dropping or garbling of bits, words, or transmissions due
to outright failures in the system. Any iconceivable trouble can be in-
troduced in this class.

d) Bias errors--the consistant algebraic bias of data caused by misalign-

ment of tracking equipment.

The order of application of the classes of errors is bias, random, patho-
logical, and transmission. This sequence conforms most closely to their order
of actual occurrence. If both bias and random errors are applied, the random
errors are applied to the data which has been previously biased.

Errors of all four classes are injected in the data in any combination of
available variations, thus offering the facility of changing the variations from
one section of the data to another. This changing of variations is accomplished
by sectioning the data by means of the time interval cards which serve as input
to the Selector program. Each group of radar site observations can be divided

into arbitrary time intervals, and within each interval one variation of each
class of errors may be applied.

In general, several time interval cards would be prepared for each site.
The site code and the teletype channel over which the radar transmissions are
to be sent are given on this card. The time interval corresponding to that card

is specified by t i and tf. The variation of each class of errors to be applied to
that interval is specified by error codes. Also specified on this card is a
transmission delay associated with this section of data; this information, in con-
junction with the time of observation, determines when the data arrives at the

input to the computer. A further item given on this card is information regard-
ing teletype control signals needed to complete the generation of a transmission.

Using the time interval cards and the tape generated by Observer as inputs,
Selector generates a tape containing the selected radar data and associated sys-
tem error codes in proper form from input to the next data generation program,
the Shred program.

2-34

MC 63-4

©

PLACE HIGH
PADDING IN

L'AST OUTPUT
BLOCK AND

WRITE OUT
LAST RECORD
ON TAPE B6.

WRITE END OF
FILE AND
REWIND B6

STNOC = 0 I

REWIND INPUT TAPE C6
AND OUTPUT TAPE
B6 AND INITIALIZE

ALL INDEX REGISTERS

READ ONE
INPUT CARD

NO !_

l-
/ X,

CONVERT

TATION REQUEST /

ARD C_NTENTS /

_ STNOC : STNO

HALT
AND

TRANSFER

HALT
AND

TRANSFER

REWIND INPUT
TAPE AG,
STNOC = 0

STNO: STATION NUMBER

OF DATA REQUESTED

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet1 of 5)

2-35

MC 63-4

BACKSPACE
ONE RECORD

A6

>

0_i p

READ ONE
RECORD

FROM INPUT
TAPE INTO

BUFFER
"BUF 2 TO
BUF 2+ 7"

A(BUFF)
STNBT

STNOT : STNO_

<

INCREASE BUF 1
INDEX BY 7

CO7-_ C°
PLACE TIME OF RE-

PORT TR IN FIRST

TWO WORDS OF BUF 1

FIGURE2-7. SELECTOR PROGRAM FLOW CHART (Sheet 2 of S)

2-36

MC 63-4

SLANT RANG_

I SR.BUF I-:5+ i

AZIMUTH

J AZ. -*BUF 1-:4+ i

ELEVATION

EL.-*
BUF 1-3+ i

TIME SINCE
LAUNCH PLUS

STATION DELAY

1
DFLN

CONVERT TIME

OF RECEIPT /(Tel TO INTEGER

Te -_
BUF I-:1 + i

/ °F'NCONVERT TIME
SINCE MIDNIGHT

PRECEDING j

LAUNCH FIXED PT./

I HALT

_ AND
TRANSFER

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet 3 of 5)

2-37

MC 63-4

COMPUTE TIME

IN HRS., MIN., SEC.,
CONVERT TO BCD

AND PLACE IN
BUF1-2+i

PRINT ON-LINE
"ERROR REQUEST

ASKS FOR IMPOS-
SIBLE TIME"

TA: FIRST TIME REQUESTED

T B: LAST TIME REQUESTED

Tr: CURRENT TIME

l
_> TB: LAST

REPORT TIME

TA: Tr

/
t o

BEGIN OF) NO
TRANSMISSION

FROM STATION '

YES

I PLACE BEGIN

OF TRANSMISSION
TAG IN

REPORT

i

TB:T r

I
_J r+l-*r J-I

FIGURE 2-7. SELECTOR PROGRAM FLOW CHART (Sheet 4 of 5)

2-38

®

FIGU RE 2-7.

END OF
TRANSMISSION
FROM STATION

YES

PLACE END OF
TRANSMISSION

TAG IN REPORT

__J _

-f-

INVALID
FROM STATION

J YES

PLACE INVALID
DATA TAG

IN REPORT

PLACE REPORT
IN OUTPUT

BLOCK. TIME

OF ARRIVAL (To)
S.R., AZIMUTH,

ELEVATION, TIME

OF OBSERVATIOI_,
STATION NUMBER

(HIGH SPEED OR
LOW SPEED)

CHANNEL
NUMBER OF

DCC

,sou u BLOCK
FULL

_ NO

WRITE OUTPUT
BLOCK ON TAPE

A6 AS ONE
RECORD

I

SELECTOR PROGRAM FLOW CHART lSheet 5 0[5)

MC 63-4

2-39

MC 63-4

2.9 SHRED PROGRAM

The Shred program produces simulated Mercury mission data in real time
for the Goddard computer.

A schematic diagram of Shred is shown on Figure 2-8.

Shred produces the following simulated input for SIC:

a) IP 7094 data

b) B-GE data

c) Telemetry readings

d) Low-speed TTY readings

e) High-speed radar readings

for Goddard

2.9.1 Input Requirements

There are two input tapes used with the Shred program: (1) the launch tape
provides simulated B-GE and IP 7094 launch data, and (2) the sequence of radar
readings produced by the Observer program and selected by the Selector pro-
grain.

Shred is controlled by the radar input.
mation (or observation) contains:

a)

b)

Each logical record of radar infor-

Type of output required

Time at which the message is to be simulated upon arriving at the
computer

c) Perturbation codes (PEC, REC, and TEC)

d) Begin or end-of-transmission codes

e) Validity code

f) Range, azimuth, and elevation (RAE) values

g) Time of RAE observation

h) Subchannel of DCC to be used

i) Station identifications

2-41

MC 63-4

The input to Shred is an 800-word per record tape containing 100 radar
readings, each reading consisting of eight words. The 8-word readings are re-
ferred to as logical records.

2.9.2 Output Requirements

The output of the Shred program is contained on three tapes:

a) Low-speed output for Goddard

b) High-speed output for Goddard

c) Bermuda high-speed output for Goddard

The low and high-speed output to Goddard must first be independently
sorted by time-of-arrival sequence (since the size of the logical record is dif-
ferent for high-speed and low-speed data), then merged to form one SIC input
tape.

2.9.3 Method

A radar reading is provided by the observer-selector complex each time a
reading is requested (there are some exceptions to this in the launch phase).
Each reading contains a PEC, REC, TEC and BEC (pathological, random,
transmission and bias error codes). These codes are used to obtain controlled

perturbations in the Shred (teletype message format) output message.

2.9.4 Usage

Shred uses a series of tables as its input to provide a flexible output.
Shred usage reduces to a description of these tables:

Table Function of Provides

T1 internal station
number

the subroutine to be used for

each particular Shred input
reading

T3 channel number the Shred region to be used to
format messages

T4 station number the first seven characters of
TTY transmitted radar mes-

sages for Goddard

2-42

MC 63-4

Table

T5

SPTEi

SPCVi

SPICi

RER

REA

REE

PER

PEA

Function of

station number

TEC (transmission
error code)
i=1,2, ...N

radar type

radar set

REC (random
error code)

REC

REC

PEC (pathological
error code)

PEC

Provides

conversion factors from Shred

input to simulated input

(1)

(2)

three probablities for a
transmission error and

three conditional probabilities

which determine the type of
transmission error, given by
(1) that such an error exists
for TTY messages only,
there are three sets of the

above six probabilities, one
set each for the beginning,
body and end of transmission
of the message

conversion factors from Shred

radar input units to Shred radar

output units. Applies biased
errors

the first seven characters, in
octal TTY code, of each mes-

sage that will be sent by a par-
ticular radar site

standard deviations for applica-
tion as random errors to range
readings for all radars. Any er-
ror code of zero causes that

particular type of error to be
bypassed, i.e., no error

standard deviations for applica-
tion to radar azimuth readings

standard deviations for applica-
tion to radar elevation readings

numbers used to simulate patho-
logical errors in radar range
readings

simulated pathological errors
for radar azimuth readings

2-43

MC 63-4

Table_

PEE

PET

HPI

HP2

HRI

HR2

HSTI

HSTIA

HSTIB

HST2

2-44

Function of

PEC

PEC

PEC =1,2,...15

PEC

REC-I,2,...15

REC

telemetry bit

telemetry bit

Provides

simulated pathological errors

for radar elevation readings

simulated pathological errors
for observation time in radar

readings, applicable to both
Goddard low-speed and Bermuda
radars

the pathological errors to be ap-
plied to the simulated position-
velocity vectors of the B-GE

the pathological errors to be ap-
plied to the simulated position-
velocity vectors of the IP 7094

the standard deviations for ran-

domly perturbing the simulated
position - velocity vectors of
the B-GE

the standard deviations for ran-

domly perturbing the simulated
position - velocity vectors of
the IP 7094

the telemetry schedule for the
launch phase

manual reverse: telemetry

probabilities that the telemetry
schedule is in error also ECT,

RFT, GEB line 1 HSRR, IP 7094
line 2

the periods of time during which
simulated B-GE data is to be

produced. The source of this
data is the STL simulated data.

If no STL message exists for a
given time, no data will be pro-
duced for that specific time. The
STL message time is used.
Sometimes Shred modifies this

time to reflect time delays, etc.

Table

HST3

HSTll

Function of

MC 63-4

Provides

the periods of time during which
IF 7094 data is to be produced.
The IF 7094 data is interpolated
from an error-free set of

position-velocity vectors pro-
vided by STL. Messages are
produced for the entire "on"
periods of time, even ff these
times do not correspond to time
of the r-v table. The latter

values, however, are meaning-
less except perhaps for the
telemetry

Table HST2 and HST3 are of the
form:

HSTi DEC first time data

requested

DEC end of first request

DEC ith time data re-

quested

DEC end of ith request

DEC th time data re-

quested

DEC end of nth request

OCT 377777777777

(large number)

All timesaregivenasbinary
integers inmicroseconds, i.e.,
XX.XXE6B35 where XX.XXis
in seconds

Miscellaneous input parameters:

HST11 BCI I,XXYYZZ
BCI I,OOOOAA
BCI I, PPQQRR
DEC

2-45

MC 63-4

Table

HSTI2

HST13

2 -46

Function of Provides

where: XXYYZZAA is the GMT
of launch for Bermuda radars in

hours, minutes, seconds and

tenths of seconds. PPQQRR is
the ECT of launch for telemetry
messages in hours, minutes and

seconds. _ is the angle from
the launch pad to Greenwich
(the angle between Mercury in-
ertial and IP 7094X-axes at
launch in floating-point radians.
One value is 1. 40581173. The

value varies slightly with differ-
ent pads)

the times, in microseconds, at

which to change the retrofire
setting in the spacecraft. The
table is of the form:

HST12 DEC time for first

change

DEC time for second

change

DEC time for last

change

OCT 377777777777

This table is used in conjunction
with HST13

the retrofire settings for the
spacecraft clock. The table is
of the form:

HST13 BCI 1, original clock
setting

BCI 1, second setting

BCI 1, last setting

Table Function of

HST14

METRY

The ordered events are:

METRY
+1
+2
+3
+4
+5
+6

+7
+8
+9
+10
+11

MC 63-4

Provides

The settings are ECT's since
launch of the form XXYY Z Z

(hours, minutes and seconds)•
When HST12+ i<t < HST12+i+1,

where t is message time, the
clock setting used is HST13 + i + 1

the periods of time during which
Asuza data is to be produced•
The simulated source for this
data is the STL IP 7094 data.

Shred tags the IP 7094 data with
a minus sign to distinguish the
Asuza source from the IP 7094
source. The table is of the

same form as table HST2

the telemetry schedule for the
launch phase. All times are
referenced to launch. (If launch
is not at midnight, see HST 11).
The times are given in fixed-
point milliseconds. The table
is of the following form:

METRY

METRY + 14

DEC XXX. XXX

DEC XXX. XXX

Start Bermuda solution

One of three posigrades fired
Two of three posigrades fired
Three of three posigrades fired
One of three retros fired
Two of three retros fired
Three of three retros fired
Liftoff

Escape tower released
Escape tower rockets fired
Spacecraft separation
Abort sequence initiated

2-47

MC 63-4

+12 Abort phase started
+13 Orbit phase started
+14 SECO

Whenthe time of a messagebeing generated is equal to or greater than the
time the telemetry event is scheduled to occur in METRY, all messages there-
after indicate that the event has occurred. Because of this slight lag in the

assignment of an event to messages, the times in METRY should precede the
actual times by one or two seconds.

SHRED:

Symbol Op Code

HSPGOD EQU I
LSPGOD EQU

HSPBRM EQU

ADDITIONAL INPUT DATA

Var Field

A nonzero value requests that the particu-
lar type of data be produced, i.e., high-
speed data from Cape Canaveral to
Goddard, low-speed TTY data from radar
stations to Goddard and high-speed input
for the Bermuda computer. The presence
of a nonzero value will cause a tape to be

labelled appropriately and will erase any
superfluous data in the output regions at
the end of the output data.

ADJTM EQU A nonzero value produces messages in the
new telemetry format. A zero value pro-
duces messages in the old TTY format.
The new format is designed to lessen non-
recognition of poorly transmitted messages
by repetition of key information. Is is the
sole format in use, except for transitionary

testing, at present. Pertains to Goddard
Shred only.

THSML EQU A nonzero value gives the FPS/16 radar a
maximum range of 1000 nautical miles

(210). _ If zero, the FPS/16 has a range of
500 (29) naut. miles. Pertains to Goddard
Shred only.

2-48

MC 63-4

Symbol

HSGODD

LSGODD

HSBERM

Op Code

BCI

BCI

BCI

BCI

BCI

BCI

Var Field

5,

,

,

t

5,

5_

3

There must be a 10-word heading or
heading space provided for each sym-
bol of HSPGOD, LSPGOD and
HSPBRM that is nonzero. Even

through the heading on the low-speed
output tape is lost during variable
length merge, reading operations de-
mand that this tape have a heading. If
a heading is omitted, the first record
of that tape will be read as the heading
and the remaining information on the
tape will be misinterpreted.

2-49

MC 63-4

USING STATION NUMBER
TABLE TI GIVES TYPE

OF OUTPUT REQUIRED

CONTENTS OF
INPUT MESSAGE

SIMULATOR STATION NO.

SUBCHANNEL NUMBER
PEC, RED, & TEC

PATHOLOGICAL, RANDOM, &
TRANSMISSION ERROR
CODES

TIME OF OBSERVATION

RANGE

AZIMUTH
ELEVATION

1,2,3

LOW SPEED
TTY MSG
FOR
GODDARD

TABLE

I
I

T2

T3 J

T5

SPTE i

SPIC i

SPCV i

PET

PER

PEA

PEE

RER
REE
REA

ARGUMENT PURPOSE
ii irrw 1

I
STATION NUMBER
CHANNEL NUMBE_

STATION NUMBER

STATION NUMBER

TEC
I I
I'" I

I I
PEC

I I
PEC J

I

PEC

I PEC

I

I REC
REC
REC

FIGURE

LOCATE SPTE i TABLE
LOCATE INTERNAL WORK AREA

LOCATE SPIC i TABLE

LOCATE SPCV i TABLE
TRANSMISSION ERRORS FOR

STATION i

FIRST SEVEN TTY CHARACTERS
FOR MESSAGES FROM
STATION i

CONVERSION FACTORS FOR
RADAR READINGS FROM
STATION i

PATHOLOGICAL ERROR FOR
TIME

PATHOLOGICAL ERROR FOR
RANGE

PATHOLOGICAL ERROR FOR
AZIMUTH

I PATHOLOGICAL ERROR FOR

J ELEVATION
I RANDOM ERROR- RANGE

RANDOM ERROR - ELEVATION

RANDOM ERROR - AZIMUTH

2-8. SCHEMATIC DIAGRAM (SHRED TABLES) I_;hcet! 0[3)

2-50

MC 63-4

TABLE

HIGH SPEED MESSAGES T2
FOR GODDARD

T5

SPTE i

HSTI

_ HSTIB

HPI

ARGUMENT

STATION NUMBER

STATION NUMBER

TEC

PURPOSE

LOCATE SPTE i TABLE

LOCATE SPCV i TABLE

TRANSMISSION ERRORS
FOR STATION i

TELEMETRY SCHEDULE

TELEMETRY ERRORS

J PEC
PATHOLOGICAL ERRORS

USING TIME ASAN
ARGUMENT AND

TABLE HST2 TEST
FOR B-GE WANT

GEB

I
USING TIME AS AN J

m

FOR I WANT

HRI

I
I

REC

FOR POSITION-VELOCITY
I VECTORS

I
RANDOM ERRORS FOR

I POSITII_I-VELOCITYVECTORS

HP2

HR2

I PEC

Ii REC

I

J PATHOLOGICAL ERRORSFOR POSITION VELOCITY

I VECTORS

I RANDOM ERRORS FOR PO-
SITION VELOCITY

I VECTORS

FIGURE 2-8. SCHEMATIC DIAGRAM (SHRED TABLES) (Sheet 2 0[3)

2-51

MC 63-4

TABLE

T2

T3

T5

SPTE i

SPCV i

HSTI

HSTIB

PER

PEA

PEE

RER

REA

REE

ARGUMENT

I STATION NUMBER
CHANNEL NUMBER

STATION NUMBER
I

TEC
I

=o

.o

I PEC

I PEC

PEC

REC

REC

I REC

I

I I
I I

PURPOSE

LOCATE SPTEi TABLE

BASIC MESSAGE FORMAT AND
INTERNAL WORK AREA

I LOCATE SPCV i TABLE
TRANSMISSION ERRORS

I
CONVERSION FACTORS FOR RADAR
AT STATION i

TELEMETRY SCHEDULE

TELEMETRY ERRORS

I PATHOLOGICAL ERRORS - RANGE

I PATHOLOGICAL ERRORS - AZIMUTH

PATHOLOGICAL ERRORS - ELEVATION

RANDOM ERRORS - RANGE

RANDOM ERRORS - AZIMUTH

I RANDOM ERRORS - ELEVATION

I

FIGURE 2-8. SCHEMATIC DIAGRAM (SHRED TABLES) (Sheet 3 o[3)

2-52

MC 63-4

2.10 SORT PROGRAM

The Sort program arranges radar observations recorded on tape according
to their time of arrival to the computer. This program sorts either the output
of the Selector program for Bermuda tapes or the output of the Shred program
for all tapes generated for Goddard reception.

Figure 2-9 shows the flow chart for the Sort program.

2.10.1

a)

b)

c)

Input Requirements

A binary tape containing radar observations.

Alter cards, recognized by SOS, of the following types:

1) An equals card which identifies the size of the tape record of the
binary tape.

2) An equals card which identifies the size of the logical record
length of data within the tape record.

3) An equals card which identifies the size of the logical record.

4) An equals card which indicates whether the input tape does or does
not contain a tape label.

The program also has the ability to sort, by means of an equals card,
the input tape set at any logical setting on a given channel.

The Sort program requires four tapes: one is the original input tape; the
others are required for successive merge passes in the Sort program. Two of
the four tapes are on channel A; the original input tape and the remaining tape
are on channel B. Logical settings for the other three tapes are variable and
can be set by an equals card as input to SOS.

2.10.2 Output Requirements

The only output requirement for the Sort program is the selection of the
output channel for the final tape. The output tape can be obtained on either
channel A or B; selection is set by another equals card to the program. The
output tape's record length originates from the same record length as does the
input.

2-53

MC 63-4

2.10.3 Method

There are two main phases of operation in the Sort program. The first is
the sorting phase, where records on the input tape are sorted according to the
key word of the sort operation. The second phase merges the records sorted by
time of arrival to the computer and arranges them so the final output tape is
sorted by information within each record and also by the records themselves.

In the first phase, the program tests the input tape to determine if it has a

label. If the tape has a label, the program reads the label and saves it for
future reference before processing begins. Initially, the program reads the
first two records from the input tape into two separate buffers. Then, the pro-
gram sorts the information in one record, according to the key word set by the
equals card, and stores the information on one of the tape units on channel A.
Sort reads the next tape record into the buffer unit just emplied and continues to

the second buffer. Again, the program sorts information in the record but
stores it on the opposite tape on channel A. The program continues this opera-
tion with the different records on the input tape, continually storing the sorted

information in the records alternately on the two tapes of channel A. The first
phase is completed when the program reaches an end-of-file indication on the
input tape. The Sort program then rewinds the input tape and the two output
tapes on channel A.

During the second, or merge, phase the Sort program compares the key
words from the first record of the first tape on channel A. This comparison is

made to determine which key word is in the lowest-order sequence. Once this
sequence is established, the key word and its corresponding logical records are
stored in the output buffer. The program continues this operation until the out-
put buffer is filled and a corresponding record is written on the output tapes.
Therefore, logical records could come, partially, from each record from each
channel A input tape. The procedure used to record records is as follows:

Two records are alternately recorded for the first pass on each tape. For
example, two sorted records are recorded on tape B1, and the next two on B2,

etc., until the pass is complete.

The procedure for the second pass is similar to the first pass except that
the records are stored as four records to each tape. The records of each pass

are recorded according to powers of two, beginning with two to the first power.
The second pass is recorded at two to the second power, or four records to
each tape; the third pass is recorded at two to the third power, or eight records
to each tape, etc.

The final pass of the merge phase is reached when the Sort program rec-
ognizes that it has reached the point where it has written all of its input as out-
put on one tape for that pass. For example, if the input consists of a total of
64 records, the final merge pass presents a powers-of-two configuration that
has recorded all 64 records on one tape. Since the information has now

2-54

MC 63-4

elapsed, records will never be placed on the other tape. This signals the end
of the merge pass.

The final step of the Sort operation is to determine if the final output tape

is on the program output channel, as indicated by an input parameter to the
program (since the channel on which the output will be recorded depends on the
number of records of input and how badly they are originally out of sort). If
Sort has determined that the output is now on a channel which was not requested

by the input parameter, it will essentially go through one more pass of trans-
ferring the data from the channel on which it is now to the requested output
channel. However, if the tape information is on the requested channel, the
program is finished. The program writes on end-of-file message upon the
final output tape, rewinds the tape, and transfers to SOS for completion.

Tape output formats are shown in tables 2-1 through 2-4.

2.10.4

a)

b)

c)

d)

e)

Usage

Tape Set-Up: A1 SOS System tape Check Tape
A2 Blank list tape L.D.
A3 Job tape L.D.
A5 Blank H.D.

A7 Blank H.D.
B1 Blank L.D.
B2 Blank L.D.
B3 Blank L.D.

B6 Shred input H.D.

Sense Switch Setting--none.

Key Setting--none.

Operating Instructions--clear machine and load tape.

Halts:

HPR 444448 Remove B6 and replace with a
blank. Press START.

HPR 333338 Tape read error. Press START

to continue; if error persists re-
generate bad tape if possible. If
no corrective action is possible
pull job.

STOP 14028 Label B6 "Bermuda Shred" save

for next job.

2-55

MC 63-4

Word
1

3
4

5
6
7
8

9
10
11
12
13

14
15

16
17
18

19

20
21
22

23
24
25

26
27

Bit
S

TABLE 2-1. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - HIGH SPEED RADAR

FOR GODDARD

TIME OF ARRIVAL -# sec.

DECREMENT, ,SUBCHAN.

000 024J01 (2or34)

TIME FOR TRAP -# sec.

FIRST 16BITS
)F TELEMETR'

RANGE 1

Bit Bit
35 S

TIME OF ARRIVAL "F sec.

DECREMENT, ,SUBCHAN.
0 00 0 2 410j (2 or 34)

TIME FOR TRAP "/_ sec.

00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00

RAN _ E3

AZIh UTH

ELEV _TION

l 1 0 1

SECON) 36 BI_ S
OF TELEMETR (

RAI'IGE2

,See note

AZIt ,UTH

.r_ ELE\ ATION

,Jl 10 _e_te
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00

RAI_gE 4

AZIIAUTH

ELEVATION

,*11 01 _ee note

AZI_ JTH 4

ELEVATION

* I 1 1 0 See_t,

Bit
35

NOTES: 01 = Cape, 02 = Grand Bahamas, 03- San Salvadore.

* -- 1000 mile recycle bit for range.

,= On Track bit.

1 = On Track.

0 = Off Track.

2-56

MC 63-4

Bit
S

Word
1

2

3

4
5
6
7
8
9

10
11

12
13

14
15
16
17

18
19

20
21

22
23

24
25
26

27

TABLE 2-2. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - IP7094

Bit Bit
35 S

TIME OF ARRIVAL -/_ sec.

SUBCHAN.
I i

0 0 0 0 2 4JOJ(2or 3410)

TIME OF TRAP -Fsec.

TIME OF ARRIVAL " # sec.

SUBCHAN.
0 0 0 0 2 4 01(2or34)

TIME OF TRAP "#sec.

(,c

X

00

72 Bit _ T/M

ame as br GEB

k

J

36Bits Floating
Point

Y

SX XX

XiX X X XX X X
X.X XX XO 0 0

0 0 - TI,_E - 0 0

CHECI_, SUM

O0 O0
0 0 01 O0

ODD (FIRST)
FRAME

00 00
00 00 10 00

EVEN(SECOND)
FRAME

Bit
35

2-57

MC 63-4

TABLE 2-3. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - GE BURROUGHS

Word
1

3

4
5
6
7
8
9

10
11

12
13
14
15
16
17
18

19
2O
21
22

23
24
25
26
27

Bit
S

TIME OF ARRIVAL -Fsec.

DECREMENT, , SUBCHAN.

0 0 0 0 2 4101(I or 3310)

TIME FOR TRAP -/x sec.

ECT

RE I"RO
FI_E

41 42 43 44 45 46 47 48

49

57

65 66 67 68 69 70 71 72

DISCf_ETE
X XX -- -

(x)

X X X -- -

Y

X X X -- -

Z

X X X -- -

X

0 0 0 0 O0 O0

0 0 0 0 Ol O0

ODD (FIRST) FRAME

Bit Bit
35 S

Bit
35

TIME OF ARRIVAL -#sec.

DECREMENT, , SUBCHAN

o o o o 2 4191(Ior 3310)

TIME FOR TRAP -/s sec.

SX XX --

?

5 X X X

TIMI-X XX XX
XX XX XX XX
XX XX XX XX

CHEC < SUM

BIT PATTERN

r 0- 10 00

EVEN (SECOND) FRAME

2-58

MC 63-4

TABLE 2-4. TAPE FORMAT - LOGICAL RECORD

SHRED OUTPUT - LOW SPEED TTY

Word
1

2

3

4

5

6

7

8

9

Bit
S

O

0

0<

0_

0_

0

Bit
35

TIME OF ARRIVAL IN F.sec.

DECREMENT JToAGj SUBCHAN.0 0 0 0 6 (14- 31)

TIME FOR TRAP IN/z sec.

0 XXXXX

_,_0 XXXXX

0 XXXXX

-_ 0 X XiXXX

0 XXXXX

= 0 XXXXX

30 3;

6 TTY
Characters
in TTY Octal

2-59

MC 63-4

N L =

NUMBER OF
WORDSIN THE

INPUT RECORD

LOCATION OF
THE KEY WORD
IN THE LOGICAL
RECORD

NUMBER OF
WORDSIN THE

LOGICAL
RECORD

REWIND INPUT TAPE

t
C INPUT TAPE LABELED)

YES

READ TAPE LABEL /

NO

t

WRITE TAPE /

LABEL ON
OTHER CHANNEL

TAPES

READ TWO
RECORDS FROM

INPUT TAPE
INTO TWO BUFFERS

BUFFx +BUFFy

I O_i J'7 SET OFF

(BUF F+i+I):C(BU F F+i+l+k) -----

f >

I S_ToO.I
t

I O_n I

C(BUFF +i +n)_ JC(BUFF +i +k +n)

' 1I n+,_n I

(,, _ :k)

®

©

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet l of 5)

2-60

MC 63-4

I

(

(

i:i-k

NO

I
.<

YES

WRITE SORTED
RECORD ON
CHANNEL A

TAPEx

HAS AN
EN_OF-FILE
BEEN READ

ON INPUT TAPE

NO

!

J SETk JOFF 1 .-_ 18

READ TAPE
RECORDINTO

BUFF x

SWITCH BUFFERS
SELECTION

AND OUTPUT
TAPE X_ Y

|
READ TWO RECORDS J

FROM EACH TAPE J

FROM CHANNEL AINTOJ
CORRESPONDING J

BUFFERS J

d5

yES

!
WRITE END

OF FILES ON
OUTPUT TAPES

AND REWIND
INPUT & OUTPUT TAPES

(

t-
0 -+ p
0 -e r
0 _ q
0 _ m

I
ISk ON

JOFF tON

READ TWO RECORDS
FROM EACH TAPE

FROM CHANNEL BINTO
CORRESPONDING

BUFFERS

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet 2 of S)

®

2-61

MC 63-4

C(BUFF I + + I): + + I)
C(BUFF 2n I n2

SET i = 1 JFF i +ni): + 1 's _

__J
-i

C(BUF F i +n i)

OPBUF +k

SET i = 2

i+I_ i

n i + 1 --, n i

m+l "-* rn

C m:N)>

READ ONE RECORD
FROM THE TAPE

CORRESPONDING
TO THAT BUFFER

JUST ELAPSED
INTO THAT BUFFER

SWITCH BUFFERS
FOR THAT TAPE

(ALTERNATE)

_l_j 0-.'m J--_

(
OFF_

p : 0

IS k ON

WRITE OUTPUT
BUFFER AS

A RECORD ON
OUTPUT TAPE ON

CHANNEL B

.[SWITCH _._'--
OUTPUT

BUFFERS

)
WRITE OUTPUT J

BUFFER AS J
A RECORD ON |

OUTPUT TAPE ONI

CHANNEL A J

_J

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet 3 of 5).

2-62

r+l --_ r

,: 2fl

MC 63-4

i : 1

,>

J SET i = 1

SET i = 2

C(BUFF i +:i)OPBUF

1
i Ini + 1 -* ni

1
<(m : N)

1:

READ A RECORD
INTO BUFFER JUST

ELAPSED FROM
THE PROPER TAPE

ON CHANNEL A

_OFF _ON

1 _ p

WRITE OUT

OUTPUT BUFFER
AS A RECORD

ON OUTPUT TAPE
ON CHANNEL B

i

I

I SWITCH I
, IOUTPUT BUFFERS I
J _ J AND ALTERNATE J
I-- llO OTHER TAPE ONI
I I CORRESPONDING I

IOUTPUT CHANNEL I

WRITE OUT
OUTPUT BUFFER

AS A RECORD
ON OUTPUT TAPE

ON CHANNEL A

READ A RECORD
INTO BUFFER JUST

ELAPSED FROM
THE PROPER TAPE

ON CHANNEL B

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet 4 of 5)

2-63

MC 63-4

(IS k ON

OFF
I

WRITE END OF I

IFILES ON
OUTPUT TAPES ON

CHANNEL B AND
REWIND ALL TAPES

)
_o.

I WRITE END OF

FILES ON
OUTPUT TAPES ON

CHANNEL A AND
REWIND ALL TAPES

,%

ISOUTPUTON \YES
PROPER CHANNEL /-..--,

ASKED FOR j

_.o
TRANSFER DATA
FROM CURRENT

OUTPUT TAPE
TO TAPE ASKED

FOR

SET k ON

$

FIGURE 2-9. SORT PROGRAM FLOW CHART (Sheet 5 of 5)

2-64

MC 63-4

2.11 MERGE PROGRAM

Merge combines several sorted binary input tapes containing radar infor-
mation to obtain a single input tape--with the information arranged in sequence

according to the keyword. Its main purpose is to merge a tape containing high-
speed data used by the launch programs with a tape containing low-speed data
for orbit and reentry portions of the flight profile, thus obtaining a single tape
containing simulated data of an actual Mercury launch-orbit-reentry mission.

The flow chart for Merge is shown in Figure 2-10.

2.11.1 Input Requirements

Merge is written in a general fashion and combines up to nine input tapes.
One of the input parameters required by the program is the number of input
tapes to be merged. The number is entered using an equals card to equate a
parameter to the number of tapes. The program also has the capability to

merge tapes of different record sizes (i. e., Merge handles variable record
sizes between different tapes). The same is true for variable size logical rec-
ords and for the location of the key word within the logical record between the
tapes. The key word in the logical record of one tape can be the first word, in
the next tape the key word can be the last word, etc. This does not mean that
the record size, the location of the key word, or the size of the logical record
is variable within one given tape. This means only that the size of the logical
record and the location of the key word is variable between tapes. Therefore,
input to the Merge program will be equals cards which indicate to the program
the size of the tape record for that particular tape, its logical record, and the
location of the key word. Each tape requires these three input cards. If nine

input tapes are used, 27 parameters are needed to describe the essential quan-
tities needed by the program.

Another parameter indicates when the input tapes are labeled. The pro-
gram does not have the capability to merge tapes having labels with tapes not
having labels; i.e., unlabeled tapes and labeled tapes cannot be merged.

2.11.2 Output Requirements

The Merge program can present any desired record size in its final output
tape. The record size is fixed by an equals card.

2.11.3 Method

The Merge program first looks at the parameter which indicates the num-
ber of input tapes; then looks at the input parameter to determine ff the input
tapes are labeled. If they are labeled, the program reads the label from each

2-65

MC 63-4

input tape andwrites one of these labels on the output tape. Two input records
are then read from eachtape--the assumption is that the input tapes are now all
sorted within themselves.

A comparison is madebetweenwords of all the logical records to deter-
mine which oneis the low-order word. This key word, together with its logi-
cal record, is transferred to the output buffer. The Merge program continues
to read records of eachtape, comparing the key words of each tape and storing
the logical records in sequencein the outputbuffer. The contents of the output
buffer is written on the output tape when the record size is reached. This rec-
ord is written on the proper tape as indicated by the logical setting. The pro-
gram continues this process until it has read an end-of-file indication on all
input tapes. The program nowfills the last unusedrecord buffer with high pad-
cling (a word containing all l's with a plus sign), the reason is that in a sort

operation this would be the highest magnitude. An end-of-file is then written
at the end of the output tape, the output tape is rewound, and a transfer is made
to SOS for completion.

2.11.4 Usage

a) Tape Set-Up:

b)

c)

d)

e)

A1 SOS Sys. tape
A2 List Tape
A3 Job Tape
A6 Blank For Output
B1 Blank

B2 Blank

B3 Sorted High Speed
B4 Sorted Low Speed

Sense Switch Setting--none.

Key Setting--none.

Operating Instructions--clear machine and load tape.

Halts:

HPR 333338 Tape read error, press START to con-
tinue; if error persists regenerate bad
tape if possible. If no corrective action
is possible pull job

STOP 14028 Write end-of-file on A2. Rewind A6 and
IBTD first few records of A6 onto A2.
Write end-of-file A2 and list all files.

Label and save A6 per instruction sheet

2-66

Nt =NUMBER OF INPUT TAPES

NO =NUMBER OF WORDSIN
THE OUTPUT TAPE

Ni =NUMBER OF WORDSIN
THEINPUT RECORD
FOR THAT TAPE

I REWIND ALL INPUT ITAPES

t

INPUT TAPES LABELED_

rYES

READ TAPE LABEL /
FROM EACH INPUT

TAPE

t

L i =NUMBER OF WORDSIN
THE LOGICAL RECORD
OF THAT TAPE

=LOCATION OF THE KEY
WORD IN LOGICAL RECORD
OF THAT TAPE

[OF_ F ON

+iON FOR "_
THIS BUFFER J

WRITE TAPE LABEL
FROM FIRST TAPE

ONTO OUTPUT
TAPE

READ TWO RECORDS
FROM EACH INPUT

TAPEINTO
CORRESPONDING

BUFFERS

NO

__ SET o_'s OFF

0-,k

0 -, nl, n2,.
/

F

'SBOFFE_t I I _i

t --"1 '÷'-" i I

C(BUFFi +ni +li): C(BUFF i +j +ni +i +li +i)

-t- i

-- i: -1 _Q

MC 63-4

FIGURE 2-10. MERGE PROGRAM FLOW CHART (Sheet 1 o[2)

2-67

{C 63-4

WRITE OUT
BUFFER ONTO

SPECIFIED OUTPUT
TAPE

t
SWITCH OUTPUT IBUFFERS

C

I
(

?
C(BUFF i +n i +li): 1'S

t
Io_ml

_.J

-t
C(BUFF i +n i)

OPBUF +k

t
m+l _ m

n.+l _ _.'kI +1 "-* I

n i : N i)

K : N O)

m : Li)

FILL UP CURRENT
OUTPUT BUFFER

WITH HIGH PADDING

WRITE OUT CURRENT BUFFER
AND ANOTHER RECORD

OF HIGH PADDING

I
--t

=
/

0 -_ nj

OFF

t
SWITCH
INPUT

BUFFERS
FOR THAT

TAPE

a,ONOR\
OFF FOR|

THAT |

BUFFER /

ON

r

READ ONE

RECORD FROM

THE TAPE
CORRESPONDING

TO THE ELAPSED
BUFFERINTO

THAT BUFFER

l

 wAsAN)END OF
FILE

READ

YES

SET _ ON I

FOR THAT JBUFFER

FIGURE 2-10. MERGE PROGRAM FLOW CHART (Sheet 2 of 2)

2-68

MC 63-4

2.12 SIMULATED INPUT/OUTPUT CONTROLPROGRAM (SIC)

SIC accepts the output of the Shredprogram (a data preparation program)
and enters this information into the real-time processing system by maintain-

ing control over monitor program execution and by simulating the Data Com-
munications Channel (DCC) operation.

The SIC program:

a} Maintains an estimate of simulated elapsed time.

b} Provides simulated input to the Goddard computers.

c} Records all output.

d} Simulates all traps.

e} Permits the use of Share Operating System (SOS} macros.

f) Measures machine loading time.

SIC performs these functions in such a way that time constraints on the
system are nearly the same as in a real-time situation.

The flow chart for SIC is shown in Figure 2-11; Table 2-5 lists the routines
and subroutines used by SIC.

2.12.1 Input Requirements

The formats of the logical records in a tape record have the same basic
pattern and are divided by time of arrival. The first three words are control
information; the rest of the logical record contains the exact configuration of
bits that should be in an input region. For example, the body for teletype con-
tains six words, each containing one teletype character.

The control words are:

Word 1--the time at which the first bit of the first word should arrive

in the computer. This time is expressed as a binary integer in
milliseconds.

Word 2 Decrement--number of words in body.

Word 2 Address--DCC subchannel to be used.

2-69

MC 63-4

Word 3--time at which the last bit of the last word should arrive in the
computer (i. e., the time of the trap).

Words 4 and continuing to next message--body of the message.

2.12.2 OutputRequirements

The format for the output record is similar to the format used for input,
except for control words. The first control word of output corresponds to the
secondword in the input; the secondword corresponds to the third input word.
The third outputword contains the Present SenseLines (PSLF) mask. The
body of the output messageis contained in consecutive words, starting with the
fourth word. It is possible, however, for the records to be slightly out of ac-
tual time sequencebecauseof the needfor using a discrete estimate (SIC's
clock) for continuousreal time.

2.12.3 Method

A timing device in the DCC gives SIC control every millisecond via a trap
over subchannel1. Not every trap, however, causes the entire set of SIC
routines to be executed. SIC performs its functions based on a predetermined
interval which may not correspond to the 1 millisecond trapping interval. For
example, SICprograms may be executedevery 3 milliseconds although the
trap occurs every millisecond. This procedure is followed to provide simula-
tion flexibility and to adjust computer time to processing requirements.

The input interval used by SICis established by bypassing N-1 of N traps,
where N is the input parameter. The time the computer remains enabledbe-
tween successive traps is therefore N milliseconds. At the beginning of each
run, the length of time which SIC assigns as N milliseconds must be defined.

There is noway for the Mercury program to stop the input without losing
it. Input enters the computer based only on its time-of-arrival tag and SIC's
simulation of real time. However, the Mercury program can ignore input by
disabling the DCC (all DCCinstructions must be simulated by SIC) thereby
shutting off the trap for the particular subchannel. Instead of giving the com-
mand directly, a reference table is used. If operating in a real-time situation,
these locations contain normal instruction; when simulating, an STR (store
location and trap) instruction which gives control to SIC, is used causing the
proper commandto be simulated.

For debuggingpurposes it is desirable to suspendthe normal flow of the
SIC/Mercury programs andperform debuggingoperations, such as selective
core dumps. The SOSsystem has many debuggingmacros useful for this pur-
pose. SIC makespossible the use of these SOSfeatures by packaging all SOS

2-70

MC 63-4

macros with a pair of off-clock and on-clock subroutines. The off-clock sub-
routine disables the DCC (with its one-millisecond pulse) and gives control to
the programmed debugging macros, or initiates any other action which is to
take place during the suspension of time. To restart time, the program calls

for a SIC start-clock subroutine which restores conditions to what they were at
the time of the off-clock action, restarts the timer and returns control to the

program. Mercury programming then continues from the point where SIC/
Monitor program operation was suspended.

There are two stops in SIC for initializing the clock setting. One stop is in
the initializing block of SIC and the other is in a subroutine that is entered by a
TSX with the DCC disabled. Both stops are for defining the time (N milli-
seconds). The stop in the initializing block also permits a definition of the time
to start looking at data, allowing for a step forward into a tape on input so proc-

essing begins with pertinent data. The reason for two (or more) stops is that
during launch a faster computer is required than during orbit.

During the orbit phase the incoming flow of data is greatly reduced and the
computer essentially idles, waiting for new input. For simulation runs this idle
time uses valuable computer time and provides nothing in return. Such idle

time is employed by a combination of three techniques: (1) SIC is set to bypass
N-1 out of N-millisecond traps (where N _35; N=10 is generally used), (2) the
amount of time SIC assigns to the N-millisecond period between traps can be

increased, and (3) a special routine called STPTME (step time) is used to move
the SIC estimate of time forward to the next trap time if the computer is idling.

All output from DCC generated by the Monitor programs are recorded by
SIC. This recording is accomplished by setting up a signal which SIC recog-
nizes as a trap when Monitor starts to write output. When SIC recognizes the
trap, it removes the data from the output region, classifies and time tags it,
stores it in an output region and sets up the next trap. The process is con-
tinued until a signal is received from Monitor indicating that no more output is
available for the particular subchannel. When filled, the output regions are re-
corded on tape; they are then reused.

2.12.4 Usage

a) Using SIC to Simulate DCC Instructions

Certain instructions cannot be performed normally without using the DCC;

these instructions must be simulated. This is done by using XEC 0 instruc-
tions in the Mercury Monitor, where 0 contains STR when using SIC, and

2-71

MC 63-4

the actual instruction when SIC is not being used. A table of such instruc-
tions is shown below.

Location Normal Instruction

SIC Instruction Used to Call
Subroutine to Simulated

Normal Instruction

0 RCT STR 0, 0, 1
0 ENB 0, T STR 0, T, 2
0 PSLF 0, T STR 0, T, 3

Both the SIC instruction and the STR can contain useful tags.

Effects of the various instructions are:

1) RCT: (XEC 0, T1) (0,T 1 : STR0, 0, 1):

(a) Enables all channels according to the last enabling mask.

(b) If given after a data trap, and if more traps are waiting, the
new trap is simulated as coming from the location of the
XEC + 1 and all channels are inhibited.

2) ENB- (XEC 0, T1) (0, T : STR0, T 2, 2):

(a) Enables all channels according to C (0, T 2, 2); C(0, T2) be-
comes the new enabling mask.

(b) The situation stated in l(b) above also applies here.

3) PSLF: (XEC 0, TI) (0, T 1 :STR 0, T 2, 3):

(a) Subchannels of the DCC (simulated) are enabled according to

C (0, T2) the next time they are checked.

A PSLF does not enable the channel. Traps which occur on a
subchannel before an enabling of the subchannel by a PSLF
are not remembered.

b) Use of SIC Debugging

SIC permits the use of standard SOS debugging macros but they must be
sandwiched by SIC subroutines, stop-clock and start-clock, which suspend
and restart the special clock. The net effect is that time is suspended
during the executions of SOS debugging macros and restarted upon the com-
pletion of the executions.

2-72

I

MC 63-4

c) Calling Sequence:

The calling sequence for the SIC program is:

STL OFCLK (MACRO)
TRA

SOS DEBUG MACROS

STL ONCLK (MACRO)
TRA

2-73

MC 63-4

TABLE 2-5. INDEX OF ROUTINES AND SUBROUTINES USED IN SIC

NAME CALLING SEQUENCE PURPOSE AND REMARKS

1. SGSTRT GO Card

2. XAA XEC STR Y,O,Z

XAB
XAD

XAG

3. CTAA

CTAA2

4. GSV

5. GRTN

6. CTC

7. GRD

8. XAHorOFCLK

9. XAKorONCLK

10. TARA

11. STPTME

XEC STR Y,O,Z = 1

XEC STR Y,O,Z : 2
XEC STR Y,O,Z = 2

SIC clock trap-No Bypass

SIC clock trap- Bypass
N-1 of N

SXD GSVS, 4
TSX GSV, 4

TSX GRTN, 4

C(XB): Subchannel Identi-
fication

TSX CTC, 4

TSX GRD, 4

STL XECS + 11
TRA XAH

STL XECS + 11
TRA XAK

TSA TARA, 4

TRA STPTME

Initialize for SIC run

Simulate action of DCC when given an RCT,

ENB or PSLF command

RCT

ENB With mask in location y

PSLF With mask in location y

Simulator Input/Output Control (SIC)

Save conditions

Restore conditions

Record data leaving computer via DCC

Read record of SIC input

Disable SIC clock and setup for SOS Debug

Macro

Restore computer for Mercury programs and
turn on SIC's clock

Reverse the PSLF mask used by Monitor

for use with SiC - (SiC looks at it back-

wards because of an early misconception)

Skip time ahead if possible

12. SGENDX TRA*STRBLE

orTRA SGENDX
Finish output records and dump core -

(used to either wrap up a run)

2-74

MC 63-4

FROM MERCURY LOADER

AND INITIALIZATION

ROUTI_

I REWIND B4, C10 /

LEAVE TRAP MOD 1

+
tE_'ERT,MEOPRU..i

EAD TIME INTERV., J

IP Ct0 ID, RECORD,I

INITIALIZE]

t

GRD BRING IN

NEXT RECI_tD _

I

SET ALL TRAP I
ISWITCHES TO OFF

FROM OFCLK MACRO

DISABLE, J
SAVE XR4

t

VE CONDITIO_S/_

COMPUTE RETURN ADR,

SAVE LOC O- 29,

REPLACE W/BOOTS TRAP

FOR CORING, REWIND B4,

BS, LOWER CORE

(3000 LOCS) _ B5

_ o,_BR,__

N NEXT REC(_I'_

SETT,_E_O_F,RSTI
HALF-SEC TRAP, SETJ

EN8 MASK, ACTIVATE I

S.C.1, INITIALIZE I

t
/s,c_ \
t/ CHANGE REAL

TIEE _T BTWN / I

\ TRA_ / 1

FROM _R

ONCLK _. ---

MACRO

T

T CLOCK

I B5 _ LOWER CORE I

RESTORE O _ 29

RETURN ADR TO

LOCN O

--3
I

READ IN SNAP I

IPROGRAM FROM 84

t
\

 'RST']
FROM B4. LOC OF

CORING

2085

l
GRTN RESTORE _

CONDITIONS

I

RESTORE XR4 - J

CLEAR ECC ESWITCH SSTEMP

t
__(WASECC_"_

FOR B _EW_:)RY j/

I TURNOFFECC j

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 1 of 5)

2-75

MC 63-4

J ENABLE MASK_ TEMP+ 3

'_ BIT 11 ON

AC BITS S,

21 SET TO ONE

I
"_"

I

ENB

J TEMP+ 3_AC J

I

AC_ XECS+5 JAC_ TEMP+ 2

I

FR_ MERCURY

TRYING TO PERFORM

RCT, ENB,_PSL F

s°%%_ J
t

_ TEMP, C(XEC)_ TEMP+ 1,

C(STR) _ XECS. LOC MASK

-ROUTINE NO. _ XR1

PSLF

S DCC iNHIBITED PSLF MASK 4 MQ

TARA

EVERSE t_ASK

=l

I jTRAXxAAcCXA_J = ,_= J TR'_AXAICXj I_ mApiETTIMEOFToINFINITyNEXT]

GRTN RESTORE SET

j
ACTIVATE S.C. 1,

TIB XAC'W 4 17, ==11 = =

ENABLE DCC,
WAIT FOR

TRAP NO _(3

_ACIC

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 2 o[5)

2-76

MC 63-4

NO

NO, WORDS LEFT IN INPUT BFR I
XRI, UPDATE 8-1/3 MS C_3UNT I

I_

IS 1/2 SEC. CLOCK _'_
UP TO INFINITY .,/

FROM 1 MS CLOCK TRAP

ON DCC SUBCHANNEL |

SAVE XR4

t

_ osv\SAVE)

i Loc oc,°,

YES (*ASTRAPFROM_ .0OCt S.C. I J

YES _

_CTAA1

CTAD _-

_:,RESE_TT,,.') _

YES (IS BUFFER EMPTY _

I NO. WORD_ _ XR2- S.C. NO._ XR4

/ oRo\
,_ emN__N.EXT)

\ RECORD/ CTAJ I

YES

_ oRo\BR,.O,..EXT,
RECORD /

J TIME OF TRAP jR5 TABLE

_!
CTAK _ !

WORD,N,.E_FFE_JI
--I

CTAM :'-t

DCC INPUT REGION

t

NO (IS INPUT

REGION FULL

t YES (IS BUFFER EMPTY_._

RECORD /

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 3 of S)

2-77

MC 63-4

SET UP TIME FOR

NEXT OUTPUT

TRAP

HIGH OR LOW

SPEED TRAP

CTAB

--_'-E'_IS DCC ENABLED

IS DCC INHIBITED

IENABLING MASK _ TEMP + 2 J

DCC NOT DISABLED NOR INHIB.]_

h CTBA

J SET _ AS TIME
FOR NEXT

TRAP

I_TA B

I SET UP RETURN TOMERCURY, INCLUDING

AC AN[LOC 3

MASK _ XECS + 5

t_
_ CTRI

YEI.___.._TIME FOR TRAP ON h N O

_,NEXT SUBCHANNEL J

NOc_TAZ IS S.C. DISABLED) YES

WAS THIS A ½ _ YES

SEC TRAP J J
i

_- CTBC

CURRENT _ S_C TRAP

J TIME_ RlOt¢_ TM
I 8.3 M, ADD _ SEC TO

I GET TIME OF NEXT
| TRAP

l
YES(_NEXTTRAPLATER_

kZHANPRESENTTIMEJNc

I I ' ISET INHIBIT SWITCH

TO OFF

TRAP ISLOST

J PUT_INR5 JTABLE ENTRY

I_
t-CTBE

_-(_E,X_INEOAL"S.C._

_ICTAS

I TTR''_CTACXI
"- _ CTAU

UPDATE PRES, TIME, I

TIB CTAUA _ 17, I
P_LF SUBCHAN 1

1
GRTN RESTORE >

CONDITIONS

TIB * 16 _TAUX

I IWAIT FOR TRAP

t CTAUA

ITIB CTAUB _ 17, ENABLE I
DCCf WAIT FOR TRAP I

t CTAUB

TIB CTAA 17, RESTORE MQ, I
_OC 3 ENB FROM ENT MASK

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 4 o[5)

2-78

MC 63-4

AVE AC S, 1-3s-J

SAVE MQ -

XR1- JXR2

l

! I I

0 --, GSVS + 5 J _TWO, 0 --, GSVS + 5 J
I ! I

I I

SAVE XR4 - SET UP J

TO REVERSE A 35- J

BIT WORD J

;I
REORDER NEXT BITI

NO_ _
BITS REORDER_

COMPUTE RETURN [
RESTORE AC, MQ,

XR 1, 2, & 4

1
ADOVERFLOW"\._._

IGINALLY BEEN jO_

I TURN OFF OVERFLOW IINDICATOR

I

NO

F!

I SKIP TAPE B4 [
FORWARD ONE

FILE

1
ESTEDNO.OF'

ESS_,P_ED_ETJ]

READ A RECORD
FROM CI 0

C(CTAA) _ 17,
-_ R3+6, _
XECSI + 17

ENTER, CONVERT,
STORE NEW
REAL-TIME

INTERVAL

SUBROUTINES

FIGURE 2-11. SIMULATED INPUT/OUTPUT CONTROL PROGRAM (SIC) (Sheet 5 of 5)

2-79

MC 63-4

2.13 CONVERSION OF THE REAL-TIME MERCURY SYSTEM FOR OPERA-
TION WITH SIC

The following changes to the real-time Mercury system permit operation
under SIC control.

a) Programs Required:

1) SIC--simulated input control program

2) SGSTRT--this is the first program executed in a SIC run and thus
provides the required initialization for SIC

3) MOSENT--this program is the equivalent of MOINIT in the real-
time system and should contain all the suppressions and indicator
settings found in MOINIT. Because time is not initialized ex-

ternally to the system, it must be preset. The cells AS2 and AS3
should be set equal to the starting simulation time; the total num-
ber of minutes in AS2 and the equivalent number of 1/2 seconds in
AS3.

b) Changes Required:

1) The symbol MONORG, used by the system loader to transfer con-
trol to the system, must be equated to SGSTRT

2) The DCC subchannel mask MCACTV must be set to activate those

input channels normally activated at the beginning of the phase in
which the simulation is to start

3) If the system is to be run in the launch phase, the following change
must be affected. The high-speed input data blocks for subchannel
#1, TMHSGB and TMXSGB, must be moved up in memory as
follows:

ALTER TMHSGB, TMXSGB

TMHSGB

TMXSGB

BSS N

BSS 24,0

BSS

BSS 24, 0
BSS M

can be replaced by BSS M + N

Where N + M = 8, which represents the words remaining of the
original 32-word storage assignment not normally used by the
channel. N should be set equal to the number of traps SIC counts

2-81

MC 63-4

4}

before updating the simulated traps. The maximum count of traps
between updatings therefore is eight.

The symbols C1 and C33 located in SIC must be equated to the new
decimal location of the tables TMHSGB and TMXSGB in that order.

If the records on the SIC input tape should change from 198, the
cell N (defined within SIC} would then have to be equated to the
new record length.

The decrement of the keys located on the operation console of the
7094 should be considered as a mixed number, that is, an integer
and a two-place fraction. Therefore, a decrement setting of 100

(octal} really is 1.00 octal and is the current setting to be used
for simulation.

2-82

MC 63-4

2.14 OPEN LOOP SIMULATION PROGRAM (OLS1)
MERCURY CONTROL CENTER

The purpose of the OLS1 program is to furnish data for the real-time oper-
ation of displays at the Mercury Control Center. The flow chart for the OLS1
program is shown in Figure 2-12.

2.14.1

The

a)

b)

Input Requirements

SOS system is used with the OLS1 program. Input to OLS1 consists of:

B-GE launch data furnished by STL on column binary cards, to be
read from tape.

Monitor log tape generated by using STL launch data or actual launch
data as input. The log tape blocks physical records of ten 17-word
logical records each; each logical record consists of five words of
identification information and 12 words of data.

2.14.2 Output Requirements

High-speed output derived from B-GE data drives the displays located at
the Mercury Control Center.

2.14.3 Method

The OLS1 program has two distinct parts: one part generates B-GE data
displays directly from the STL card; the second part generates Goddard-to-
Mercury Control Center data from the log tape. When data from either of
these two parts is generated, the OLS1 program reads out that information, on

the high-speed lines, to be recorded on the A-Simulator at the Mercury Control
Center or to drive MCC displays. The program methods employed during each
phase are the same. The OLS1 program merely reads the input data and waits
for the 7094 clock to become equal to the time tag on the data. When the times
are equal, the data is transmitted from the computer to MCC.

2.14.4

a)

b)

Usage: OperatorWs Procedures

Call the MCC to arrange to record data on the A-Simulator tape or to
drive displays via the high-speed lines

Load the OLS1 program using SOS

2-83

MC 63-4

c) Mount STL tape on A6 if B-GE data is desired.

d) Mount log tape on A7 if normal high-speed output is required.

e) Mount blank tapes on B3 and B4 for logging high-speed output that is
transmitted.

f) Arrange with the MCC as to which type of data is to be sent.

g) Enter proper code in keys for program selection. (Key 35 for B-GE
data; Key 34 for display data).

h) Upon receipt of signal from the MCC, press START to begin program.

i) Save tapes A6, A7, B3 and B4 and label unless otherwise instructed.

All steps are accompanied by an error message printout.

2-84

MC 63-4

PRINT
START-OF-JOB

MESSAGE

PROGRAM STOPS.
OPERATOR ENTERS

CODEIN
CONSOLE KEYS

ITEST)--1 KEYS NOT 1 OR 2

=2

ooo
ILLEGAL CODE- I

REENTER CODE J

IN KEYS J

FIGURE 2-12. OLS1 PROGRAM FLOW CHART (Sheet 1 of#)

2-85

MC 63-4

I

PRINT

START-OF-JOB
MESSAGE

REWIND
STL

TAPE

I
RESET

MESSAGE

CLOCK

RESET

7094
CLOCK

RESET
TRANSMISSION

SWITCH

PUT
TRANSFER

TO DCC
TRAP

PROCESSOR
AT LOC. 4

FIGURE 2-12.

B-GE DIRECT PHASE

t
READ
STL

TAPE

READ

CORRECTLY

I YES

RETURN

TO
START

NO •

EDIT
STL DATA.

START CLOCK

I
DOES7o94\

LOCK AGREEJ
TH TIME TAG I

ON DATA /
YES I_

l-

(IS HS OUTPUT_

iBUFFER BEING I-

\ USED/

NO

7094 CLOCK
INCREMENTED.

RETEST FOR
AGREEMENT

I

YES, WAIT

Not
MOVE

MESSAGE
TO HS OUTPUT

BUFFER

I
ACTIVATE

HS OUTPUT
SUBCHANNEL

I
INCREMENT

MESSAGE
CLOCK

PROGRAM LOOPS

UNTIL HS MES-
SAGE HAS BEEN

TRANSMITTED,
THEN DCC TRAP

OCCURS

OLS1 PROGRAM FLOW CHART (Sheet 2 of 4)

J

2-86

MC 63-4

HSOUTPUT

IT

i

I CLOCK OR |
_, FROM HS]

INTERRUPT
FROM MAIN
PROGRAM

CLOCK

DEACTIVATE HS OUT-
PUT SUBCHANNEL UPDATE CLOCK

RESTORE CHANNEL
TRAPS

/ _OOOI
RETURN TO MAIN

PROGRAM AT POINT
OFINTERRUPT

TRAP PROCESSOR" DCC TRAPS MAY OCCUR AT ANY POINT IN MAIN PROGRAM

FIGURE 2-12. OL51 PROGRAM FLOW CHART (Sheet 3 of 4)

2-87

MC 63-4

I

REWIND

LOG TAPE

RESET

TRANSMISSION

SWITCH

RESET

7094

CLOCK

PRINT

START-OF-JOB

MESSAGE

t
FILL

LOG TAPE

BUFFER

t
RESET

BUFFER

COUNT

PUT TRA

TO DCC
TRAP

PROCESSOR

AT LOC.

4

GODDARD-TO-MERCURY CONTROL CENTER PHASE

t
ENABLE

FOR DCC

TRAPS

MOVE MESSAGE

OUT OF

INPUT BUFFER

t
REFILL

BUFFER IF

REQUIRED

t

IS HS OUTPUT N_ O

MESSAGE

ODD FRAME _

IS HS OUTPUT

BUFFER

BEING USED _

YES,
WAIT

t NO

FILL

HS OUTPUT

BUFFER

I 7094 CLOCK

INCREMENTED.

RETEST FOR

AGREEMENT

DOES 7094

CLOCK AGREE

WITH TIME JTAG ON DATA j

YES

ACTIVATE

HS OUTPUT

SUBCHANNEL

t
MOVE MESSAGE

OUT OF

INPUT BUFFER

i

t
REFILL

BUFFER IF

REQUIRED

SOUTPUT EVEN _--_ I

/ i
IS HS OUTPUT

BUFFER

BEING USED j

_ No

FILL

HS OUTPUT

BUFFER

t
ACTIVATE

HS OUTPUT

SUBCHANNE k

t
/ ,$7o94\

NO/ CLOCKTIME/
_GREATER THAN/

ESSAGE TIME TA

YES

PROGRAM STOPS. h • •PUSH "START"
ITO BE_IN ANEW

FIGURE 2-12. OLS1 PROGRAM FLOW CHART (Sheet 4 o[4)

2-88

MC 63-4

2.15 CLOSED LOOP SIMULATION PROGRAM (CLS3)-
MERCURY CONTROL CENTER

The purpose of the CLS3 program is to generate a special purpose mag-
netic tape which contains B-GE to Goddard data, B-GE display data, IP 7094
data, IP 7094 false computer words, and flight flags. This tape will be played
on the B Simulator at the Mercury Control Center to supply real-time data for
the Goddard computers and the B-GE direct displays during a simulated launch.

The flow chart for CLS3 is shown in Figure 2-13.

2.15.1 Input Requirements

The SOS system is used with the CLS3 program. Input required by the
Closed Loop Simulation program are:

a) STL-furnished B-GE Direct and B-GE-to-Goddard data on punched
cards which are to be read from tape.

b) IP 7094 data produced by the Shred program and read in from tape.

c) Flight flags on cards furnished by NASA and read from tape. Columns
1-6 of the card contain time in milliseconds since lfftoff and columns

8 and 9 contain the flight flag number in decimal.

2.15.2 Output Requirements

The output of CLS3 is a single-record 7-track tape which contains IP 7094

launch data, B-GE display data, B-GE data, a timing track, a flight flag track,
and an IP 7094 false computer word track. IP 7094 and B-GE-to-Goddard for-

mats are shown in Figures 2-14 and 2-15, respectively.

2.15.3 Method

The CLS3 program runs in two phases. The first phase under sense

switch option extends the IP 7094 Shred tape with false computer words. The
second phase reads the three sources of data into core storage and arranges
the messages in the block according to the time when they should be read out.
Four-block buffers are continuously being filled and written out. The buffers
are treated cyclically by the program; the filling and the writing out on tape are
always two blocks out of phase with one another.

2-89

MC 63-4

2.15.4

a)

b)

Usage: Operator's Procedures

Mount STL tape on B3.

Mount IP 7094 tape on A6 ifthe tape is not to be extended. Mount

IP 7094 tape on B6 and a blank on A6 ifthe tape is to be extended.

e) Mount flightflag tape on A7.

d) Mount a blank tape for output on C1 and set the density to 200 bitsper
inch.

e) Load program using SOS.

i) To extend IP 7094 Shred tape, depress sense switch 1 and set the keys
to the time at which the extension is to begin. Do not depress sense
switch unless the Shred tape is to be extended.

g) At the completion of the run, remove C1 and send it to MCC.

2-90

MC 63-4

,s,P,o9,_
RED TAPE TO }

EXTENDEDy

_ NO

REWIND TAPES. JSET SWITCHES

CLEAR BLOCKS J1, 2, &3

J FILL BLOCKS J1&2

J WRITE BLOCK 4 J
ON OUTPUT

TAPE

J CLEAR AND FILL JBLOCK C

l

J LOAD OUTPUT J
TAPE CHANNEL

WITH BLOCK A

i
FORMATION J

'_EN ENTEREDJ

i YES

J WRITE REMAIN- J
ING BLOCKS ON
OUTPUT TAPE

YES

000

I ENTER
KEYS

O I
READ BLOCK

FROM B6

,ME_EAT_'_
HAN EXTEND

TIME JI EEF,LLIPROGRAM ON YES
FOLLOWING PAGE

J C-- 3ON 1ST PASS

= 4 ON 2ND PASS
= 1 ON 3RD PASS

THEN 2,3,2,1,... ETC.
ON SUCCESSIVE

000 PASSES

I A= 1 ON 1ST PASS ETC.

OeO THEN 2,3,4,1,2,... ON
SUCCESSIVE PASSES.
LCH INSTRUCTION

MAINTAINS CONTINU-
OUS RECORD ON

OUTPUT TAPE

EXTEND TAPE J
TO 1000 SEC J

WiTH FALSE COM-J

PUTER WORDS J

FOUR-BLOCK
OUTPUT
BUFFER

NO

I
WRITE
BLOCK

ON
A6

T

FIGURE 2-13. CLS3 PROGRAM FLOW CHART(Sheet] of 2)

m

1 TBLC 1

2 TBLC 2

3 TBLC 3

4 TBLC 4

2-91

MC 63-4

YESf

\

I

INITIALIZE ADDRESSES

FOR CURRENT
OUTPUT BLOCK

IS CHANNEL A

TRANSMITTING DATA J
NO

FLIGHT FLAGS TRANS-

JMITTED INTO BLOCK

NO

MOVE ONE RECORD OF

FLIGHT FLAGS INTO BLOCK

"i
IS CHANNEL B "_

JTRANSMITTING DATA

NO

___ B-GE DATA TRANS-MITTED INTO BLOCK

_NO

I MOVE ONE RECORD OF
B-GE DATA1NTO BLOCK

YES(IS CHANNEL A

\ TRANSMITTING

_ NO

YES/ IP 7094 DATA TRANS-

L MITTED INTO BLOCK

t No

MOVE ONE RECORD OF

IP 7094 DATA INTO BLOCK

-7

NO(ALL DATA NOW IN

\ OUTPUT BLOCK

INPUT

r

PU_T (ONE CONTINUOUSRECORD OFINTER-
LEAVED DATA

___ FROM THREESOURCES)

FIGURE 2-13. CLS3 PROGRAM FLOW CHART IfSheet 2 o[2)

2-92

MC 63-4

EIGHT-BIT WORD TRANSFERS FROM DATA
RECEIVER FIRST SUBFRAME

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

1 TELEMETRY 8

9 TELEMETRY 16

17 TEL EMETRY 24

25 TELEMETRY 32

33 TEL EMETRY 40

41 TELEMETRY 48

49 TEL EM ETRY 56

57 TELEMETRY 64

65 TELEMETRY 72

1 A 8

9 A 16

17 A 24

25 A 32

33 A 36_ 1 B 4

5 B 12

13 B 20

21 B 28

29 B 36

1 C 8

9 C 16

17 C 24

25 C 32

33 C 36 I 0 0 0 0

0 0 0 __ 1 ID* 5

EIGHT-BIT WORD TRANSFERS FROM DATA
RECEIVER SECOND SUBFRAME

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

1 D 8

9 D 16

17 D 24

25 D 32

33 D 36 _ 1 E 4

5 E 12

13 E 20

21 E 28

29 E 36

1 F 8

9 F 16

17 F 24

25 F 32

33 F 36 I 1 N 4

5 N 12

13 N 20

21 N 28

29 N 36

1 CHECKSUM _ 8

9 CHECKSUM _'. 16

17 CHECKSUM _ 24

25 CH ECK SUM _. 32

33 :Z 36Jo o o o

0 0 0 [1 ID* 5

THE ABOVE CONSTITUTES A COMPLETE MESSAGE FRAME AND IS TRANSMITTED EVERY 400
MILLISECONDS. EACH SUBFRAME CONSISTS OF 192 SERIAL BITS PRECEDED BY A SYNC SIGNAL.
THE QUANTITIES REPRESENTED BY A, B, C, D, E, F AND N ARE RESTRICTED INFORMATION AND
ARE SPECIFIED IN OTHER DOCUMENTS.

* SEE NOTE 1 FOR MAKEUP OF ID WORD.

FIGURE 2-14. IP 7094 DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet] of 2)

2-93

MC 63-4

SEE NOTE 2 FOR FORMAT OF BITS 1 TO 72 OF FIRST SUBFRAME IN ABSENCE OF TELEMETRY
DATA AND NOTE 3 FOR FORMAT IN ABSENCE OF QUANTITIES A, B, C, D, E, F AND N.

NOTES

1. THE FIVE-BIT IDENTITY (ID) WORD IN EACH SUBFRAME CONVEYS THE FOLLOWING INFORMA-

TION:

/_ DATA FROM IP 7094 HIGH-SPEED BUFFER AND RETRANSMITTER

BIT 1: A ZERO SIGNIFIESIP 709 DATA FORMAT
A 1 SIGNIFIES RAW RADAR FORMAT

BIT 2: A 1 SIGNIFIES SECOND SUBFRAME
BIT 3: A 1 SIGNIFIES FIRST SUBFRAME
BITS4 AND 5: INDICATE SOURCE OF RAW RADAR DATA

2. IF NO DATA IS RECEIVED FROM THE TELEMETRY EVENT TRANSMITTING BUFFER, THE HIGH-
SPEED BUFFER AND RETRANSMITTERS ARE ARRANGED TO TRANSMIT ZEROES IN THE BIT PO-
SITIONS OCCUPIED BY TELEMETRY EVENT DATA BITS i THROUGH 40 AND 43 THROUGH 72.

ONES AREITRANSMITTED IN POSITIONS 41 AND 42, RESULTING IN ERRONEOUS PARITY FOR
THE TELEMETRY EVENT DATA MESSAGE.

3. IN THE ABSENCE OF DATA QUANTITIES A, B, C, D, E, F AND N, THE COMPLETE MESSAGE
FRAME IS TRANSMITTED EVERY 400 MILLISECONDS. TELEMETRY DATA CONTINUES TO BE
TRANSMITTED. ZEROES WITH 1'S INTERSPERSED IN CERTAIN POSITIONS ARE TRANSMITTED
IN PLACE OF THE MISSING DATA QUANTITIES. THE FOLLOWING BITS APPEAR AS 1'S IN THIS

EVENT:

SUBFRAME EIGHT-BIT WORD NO. QUANTITY BIT WITHIN QUANTITY

I 12 A 24
1 15 B 12
1 18 B 36
1 21 C 24
2 3 D 24
2 6 E 12

2 9 E 36
2 12 F 24
2 15 N 12
2 18 N 36
2 19 CHECKSUM 1

FIGURE 2-14. IP 7094 DATA, MERCURY CONTROL CENTER-TO-GODDARD

MESSAGE FORMAT (Sheet 2 o[2)

2-94

MC 63-4

EIGHT-BIT WORD TRANSFERS FROI¢
RECEIVER: FIRST SUBFRAME

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 1

2 9

3 17

4 25

5 33

41

49

57

65

1

1

9

17

1

9

17

1

9

17

1

9

17

1

0

TELEMETRY 8

TELEMETRY 16

TELEMETRY 24

TEL EMETRY 32

TELEMETRY 40

TELEMETRY 48

TELEMETRY 56

TELEMETRY 64

TELEMETRY 72

DISCRETE WORD 8

G 8

G 16

G 24

H 8

H 16

H 24

J 8

J 16

J 24

K 8

K 16

K 24

I I I I I I I

0 0J I ID* 5
l

I

DATA EIGHT-BIT WORD TRANSFERS FROM DATA
RECEIVER: SECOND SUBFRAME

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 1

2 9

3 17

4 1

5 9

6 17

7 1

8 9

9 17

1

9

17

1

1

1

1

1

1

1

1

1

i

1

0

L 8

L 16

L 24

M 8

M 16

M 24

N 8

N 16

N 24

CHECKSUM 8

CHECKSUM 16

CHECKSUM 24

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 ! 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 01 1 ID* 5
J

I

THE ABOVE CONSTITUTES A COMPLETE MESSAGE FRAME AND IS TRANSMITTED WITH AN IN-
TERVAL OF 500 +_100 MILLISECONDS BETWEEN THE START OF ONE MESSAGE AND THE START OF
THE NEXT MESSAGE. EACH SUBFRAME CONSISTS OF 192 SERIAL BITS PRECEDED BY A SYNC SIG-
NAL. THE QUANTITIES REPRESENTED BY G, H, J, K, L, M AND N ARE RESTRICTED INFORMATION
AND ARE SPECIFIED IN OTHER DOCUMENTS.

*SEE NOTE I FOR MAKEUP OF IDWORD.

SEE NOTE 2 FOR FORMAT OF BITS 1 TO 72 OF FIRST SUBFRAME INABSENCEOFTELEMETRYDATA
AND NOTE 3 FOR FORMAT IN ABSENCE OF QUANTITIES G, H, J, K, L, M AND I_. _

FIGURE 2-15. B-GE DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet 1 of 2)

2-95

MC 63--4

NOTES

1. THE 5-BIT IDENTITY (ID) WORD IN EACH SUBFRAME CONVEYS THE FOLLOWING INFORMA- *
TION:

DATE FROM B-GE HIGH-SPEED BUFFER AND RETRANSMITTER.

BIT 1: ALWAYS AZERO
BIT 2: A 1 SIGNIFIES SECONDSUBFRAME
BIT 3: A 1 SIGNIFIES FIRSTSUBFRAME
BIT 4: ALWAYSA ZERO
BIT 5: ALWAYS A ZERO

2. IF NO DATA IS RECEIVED FROM THE TELEMETRY EVENT TRANSMITTING BUFFER, THE HIGH-
SPEED BUFFER AND RETRANSMITTERS ARE ARRANGED TO TRANSMIT ZEROES IN THE BIT PO-
SITIONS OCCUPIED BY TELEMETRY EVENT DATA BITS 1 THROUGH 40 AND 43 THROUGH 72.

ONES ARE TRANSMITTED IN POSITIONS 41 AND 42, RESULTING IN ERRONEOUS PARITY FOR
THE TELEMETRY EVENT DATA MESSAGE.

3. IN THE ABSENCE OF DATA QUANTITIES G,H,J,K,L, M AND N, THE COMPLETE MESSAGE FRAME
IS TRANSMITTED EVERY 650 MILLISECONDS. TELEMETRY DATA CONTINUES TO BE TRANS-
MITTED. ZEROES WITH 1'S INTERSPERSED IN CERTAIN POSITIONS ARE TRANSMITTED IN
PLACE OF THE MISSING DATA QUANTITIES. THE FOLLOWING BITS APPEAR AS 1'S IN THIS

EVENT:

SUBFRAME EIGHT-BIT WORD NO. QUANTITY BIT WITHIN QUANTITY

1 13 G 24
1 16 H 24
1 19 J 24

I 22 K 24
2 3 L 24
2 6 M 24
2 9 N 24

2 10 CHECKSUM 1

FIGURE 2-15. B-GE DATA, MERCURY CONTROL CENTER-TO-GODDARD
MESSAGE FORMAT (Sheet 2 of 2)

2-96

MC 63-4

2.16 CLOSED LOOP SIMULATION PROGRAM (BCLS2)
BERMUDA TO GODDARD

BCLS2 writes a continuous-record, 3-channel tape which, when read by the
B-Simulator, is converted to Verlort and AN/FPS-16 radar signals to be re-
corded by the A-Simulator tape drive. When this tape is transported to Ber-
muda, it can be read by the operational data recorder and the signals generated
can be used as radar input to Goddard.

The flow chart for BCLS2 is shown in Figure 2-16.

2.16.1 Input Requirements

Input to BCLS2 is a Bermuda SIC input tape containing Verlort and AN/FPS-
16 radar data blocked in 198-word physical records. The logical records have
three identification words each and a variable number of data words. Both AN/

FPS-16 and Verlort radar input records are 15 words long, including identifi-
cation. The SOS system must be used with this program.

2.16.2 Output Requirements

The B-Simulator output tape is a single-record, 3-track tape. The three
tracks are Verlort and AN/FPS-16 radar messages and the timing track. The
radar message format is shown in Figure 2-17.

2.16.3 Method

The BCLS2 program runs in two phases. The first phase reads the SIC

tape and duplicates only the radar data. The second phase reads the duplicated
SIC tape and extracts the Verlort and AN/FPS-16 radar data from it. The pro-
gram then writes this data, along with a timing track, on a timed output tape.
BCLS3 has a 4-block output buffer which is treated cyclically. The program is
always filling one block at the same time another is being written on tape; the
filling and the writing on tape are always accomplished two blocks out of phase
with one another.

2.16.4 Usage: Operator's Procedures

a) Mount Bermuda SIC tape on B5.

b) Mount a Blank on A5.

c) Mount intended output tape on B3.

2-97

MC 63-4

d) Load program using SOS.

e) Printout indicates whenprogram is finished.

f) RemoveB3, label, and sendto the Mercury Control Center.

2-98

REWIND TAPES, ISET SWITCHES

DUPLICATE RADAR]
PORTIONS OF SIC

INPUT TAPE ONTO A-5

J FILL BLOCKS J1 AND 2

J WRITE B| ON IOUTPUT TAPE

FILL]BLOCK (i +2)

INFORMATION J

EN ENTEREDy YES

"_NO

_J SET i =(i +1) [

REWIND TAPES J

m

FOUR-BLOCK
OUTPUT BUFFER 1

2

3

4

OUTPUT TAPE FORMAT

B

A AN/FPS-16

8 TIMING TRACK

4 VERLORT

2

1

I

MC 63-4

FIGURE 2-16. BCLS2 PROGRAM FLOW CHART

2-99

MC 63-4

2.17 READ LOW-SPEEDSIC TAPE (RLSST)

RLSST generatesSIC input tapes. The prime purpose of the program is to
convert the TTY messagedata containedon the SIC tape to BCD. In addition, a
BCDtape containing the simulated radar observations is prepared.

2.17.1 Input Requirements

The binary SIC tape constitutes the only input of this program. The input
tape consists of simulated Verlort and AN/FPS-16 radar observations grouped
into physical records, 198 words in length. Records are composed of twenty-
two, 9-word logical records.

2.17.2 Output Requirements

RLSST utilizes SE9OU2 (DNOUT) to prepare the BCD output tape. Access
to all information included in the radar messages can be obtained providing it

is tape listed.

2.17.3 Method

The program reads and extracts radar data from the SIC tape. Each logi-
cal record on the SIC tape contains a subchannel number that identifies the line
over which the data is being sent. The data is packed into the storage buffer

for any given subchannel. When a 34-word message is completed, the data is
converted to BCD and written on the output tape.

The program employs the SOS system, with an additional blank on B-3
(output), and the input on C-10. Netiher the sense switches nor the console
keys are required for operation of this program.

P
2-101

MC 63-4

DIT5 ZO TO ,3,._

Time
1 17

T
2 M

Time
3 3

T T
4 M M

Range
5 9

I" Time
M 11

Range Range O
17 _ 19

T T Range _
6 M M 3 -

Az
7 11 =

T T Az
8 M M 5

El El Az
9 13 ..t.--_ 16 1

El
1.____0TM TM 7

Range 0 El
11 20 T 1

TM TM Range12 14 -

Range
13 6

TM TM Range Range =14 0 1

Az Az S S S
15 16 17

T T Az
16 M M 10 =

Az
17 2 =

T T El El
18 M M 15 _ 17

El
19 7 : =

T T El
20 M M 1

EC
21 9

= B DA
EC

22 1 IEC
23 9

GS C
EC

24 1 J

Time
24

Time
16

Time
10

Time Time
T 1 2

_ Range
- 16

Range
8

Az Range Range
16 1 2

Az
10

Az"
4

El
=- 12

El
6

Range
19

_ Range
13

Range
-- 5

S S S

Az
15

Az
_- 9

S S Az
1

El
_: 14

El
_ 6

EC
16

EC
8

EC
16

-J EC8

FIGURE 2-17. HIGH SPEED BERMUDA INPUT FORMAT FROM DCC

2-102

"RJT_ _ A
.LV.I._.J U ¢J _"i

Section 3

UTILITY PROGRAMS

Utility programs complement monitor and computational programs in the
Mercury Tracking System. As such, they are service programs which pro-
duce input tapes, process output tapes, and satisfy various specialized needs.

Many utility programs are recorded on a C1 utility tape to provide availa-
bility of utility programs as needed. Each such utility program appears on the
C1 tape as a single record; loading instructions are at the beginning of each
record.

Program selection and loading from the C1 utility tape is accomplished
with the use of a call card. The information contained on this type of card
positions the tape to the desired record and initiates the loading action. Before
positioning and after loading, aeall card rewinds the C1 tape. Once loaded,
each program is identified on the on-line printer before its execution.

3-1

_ 63_4

3.1 PROGRAM TO PRINT SELECTED DCC SUBCHANNEL INPUT-OUTPUT

DATA FROM A MERCURY LOG TAPE (MXCHER)

MXCHER reads the B6 log tape and selects and prepares for off-line
printing in octal the input-output data identified with selected DCC subchannel

numbers. An option is provided to permit either searching the tape for several
subchannel numbers in one pass or of searching separately for each requested
number. In the first method, entries are printed in the order in which they ap-

pear on tape; in the second, all entries for a given subchannel are printed to-
gether.

The flow chart for MXCHER is shown in Figure 3-1.

3.1.1 Input Requirements

Input to MXCHER includes the B6 log tape produced during a Mercury run.

3.1.2 Output Requirements

Output from MXCHER is produced on A2. Entries are printed vertically
across the page, six to a page. Marginal numbering is provided, and on- and
off-line comments are produced as required.

3.1.3 Method

The first record on the B6 tape is tested to ensure readability and to set

the density mode. When processing, tests are made for redundancy, EOF,
EOT, and blank tape conditions. On-line comments are produced as required,
and all conditions, except an output redundancy, result in a program stop.

3.1.4 Usage

MXCHER is entered with a call card read on line.

a) Storage Required--2101 locations

b) Operating Notes:

1) Sense Switches are not used

2) Entry Keys:

S--when up, subchannels are printed in the order in which they

3-3

MC 63-4

occur. When down, a separate pass is made for each selected
subchannel.

1 to 35--correspond to subchannels to be printed

c) Stops: (all stops are accompanied by on-line print)

200448 HPR 4018

200318 HPR 4028

200368 HPR 4038

200548 HPR 4048

202658 HPR 4058

203038 HTR 4068

203558 HPR 4078

203578 HPR 4108

- Waiting for request word in keys

- Cannot read B6

- B6 is a BCD tape

- No entry has been made in keys

- B6 was running away

- FINAL STOP (press start to do another)

- Redundancy or wrong word count (see

on-line print)

- A2 End of tape

3-4

MC 63-4

PRINT MESSAGE

ON-LINE AND STOP

(HPR 260)

@

MXCHER

WRITE HEADING ON

OUTPUT TAPE, REWIND
LOG TAPE. SET LOG TAPE

TO PROPER DENSITY MODE

AND TEST READABILITY

GOOD
l

PRINT ON-LINE THAT J
R

PROGRAM IS READY TO ACCEPT J

INFORMATION FROM KEYS J

AND STOP (HPR 257) J
I

l
J ENTER KEYS ANDFLIP TO AC

_GAIN _

LOCATE HIGHEST ORDER
1 BIT IN AC, LOAD

S.I. WITH A WORD HAVING
A BIT IN THAT POSITION,

ZERO EVERYWHERE ELSE.
DELETE THAT BIT FROM

CONTENTS OF RPEAT

NICE _ _

WRITE, ON OUTPUT TAPE, A
REMARK DESIGNATING THE

SUBCHANNEL(S) BEING SOUGHT
ON THIS PASS.

®
J IF LOG TAPE IS BCD OR
J IS OTHERWISE UNREADABLE,
J PRINT MESSAGE ON-LINE

........................... J AND STOP. PRESSING START
| RETURNS PROGRAM

J TO BEGINNING

C(AC) -, S.I.
0 -* RPEAT

IF RPEAT= 0 PROGRAM

WILL SEARCH FOR ALL

J SELECTED SUBCHANNELS..... IN ONE PASS. IFNONZERO,
DOES A SEPARATE PASS

FOR EACH SELECTED
SUBCHANNEL.

J INITIALIZE LOCATIONS PAGE,
HOMNY, EOF, EOT, IMPAS AND
EXECUTE CHANNEL B TIMING
LOOP TO AVOID INDICATION

THAT "TAPE IS RUNNING AWAY"

ON FIRST LOG TAPE READ

"PAGE"ISINITIALLY SET

TO A LARGE NON-ZERO
NUMBER. OTHERS ARE

SET TO ZERO

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Sheet 1 o[6)

3-5

MC 63-4

C(IR1)= 17(1 I-i)

@
I--

READ A RECORD FROM LOG

TAPE WITH COMMAND IO6I
_J,

PERFORM ERROR TESTS

(SUBROUTINE ERT)
1 REDUNDANCY EXIT

2 EOF EXIT

LOT EXITNORMAL EXIT

I INITIATE READING OF
NEXT LOG RECORD WITH

COMMAND IN IO5

q
17010 -, IR1, OBTAIN INPUT BLOCKJ

ADDRESS FROM IO6, ADD 17010, J

STORE ADDRESS IN "HERE" & "GOGO" J

909o _

J J FIRST WORD OF iTH 17-WORD BLOCK J

J........ J TO AC (i = 1,2 I0). MASK OUT ALL IJ J BUT SUBCHANNEL NO. COMPLEMENT

I OF SUBCHANNEL NO. _ IR2

>

NO

i
(suBo NL o)

< I
(s r,sEECTOSUBC,NN:9

YES

I SET UP INDICES AND ADDRESS
OF NEXT AVAILABLE LOCATION

IN INTERMEDIATE BUFFER

HERE

I TRANSFER THIS 17-WORD BLOCK TO

INTERMEDIATE BUFFER.

INCREMENT HOMNY (COUNT OF THE

NUMBER OF 17-WORD BLOCK IN
INTERMEDII rE BUFFER).

TESTING IF J

INTERMEDIATE

BUFFER FULL

................. (C(HOMNY): 5) > _Q

, BACK TESTING IF ALL TEN

DECREMENT _ C(IR I): 1710) 17-WORD BLOCKS INC(IR1) BY 1710 THISRECORDHAVE

< I BFEN EXAMINFD

.......... END-O F-LOG TAPE
HA_ RFFN _FTF_TF_

INTERCHANGE I/O]
COMMANDS IN LOCATIONS

lOS AND 106

FIGURE 3.1. MXCHER PROGRAM FLOW CHART (Sheet 2o[6)

3-6

MC 63-4

TESTING IF ANYMORE
SUBCHANNELS ARE

TO BE SEARCHED FOR

OUTEM

(

(
C(HOMNY): 0)

t
CONVERT CONTENTS OF

INTERMEDIATE BUFFER TO

BCD FORMAT FOR OUTPUT.

(SUBROUTINE CONIT)

INITIATE WRITING >
OF OUTPUT

(SUBROUTINE WRIT)

-t
C(EO F): 0

: t
C(IMPAS): 0

: t
C(EOT): 0

: t

J INITIALIZE INTERMEDIATE

BUFFER ADDRESS COUNTER.
I NTERCHANGE OUTPUT

I/O C_ANDS

SIGNL t

J PRINT ON-LINE THAT LOG TAPE WAS J

RUNNING AWAY. POSITION LOG TAPEI
50 THAT OPERATOR MAY MANUALLY

WRITE AN END-OF-FILE

J STOP(HPR 26110)

ND

t.......(

REWIND LOG TAPE. WRITE J
A PAGE EJECT RECORD AN IOUTPUT TAPE

t
C(RPEAT): 0)

t=
WRITE END OF RUN J

REMARK ON OUTPUT ITAPE AND PRINT ON-LINE

t

J FINAL STOP(HPR 26210)

TESTING IF ANYTHING IS J
IN INTERMEDIATE BUFFER. ICOULD BE EMPTY

ON E.O.F OR E.O.T.

...... J TESTING IF AN END-OF-FILE J
HAS BEEN DETECTED

('_ I 171(';.TAPF

)] TESTING IF "LOG TAPE I
...... RUNNING AWAY" CONDITION

HAS BEEN DETECTED

) I TESTINGIFEND'OF'LOG I
...... TAPE HAS BEEN

ENCOUNTERED

I t PRESSING START PERMITS IDOING ANOTHER RUN J

FIGURE 3.1. MXCHER PROGRAM FLOW CHART (Sheet 3 of 6)

3-7

MC 63-4

TSX ERT, 4
(REDUNDANCY RETURN)

SUBROUTINE ERT (END-OF-FILE RETURN)
(END-OF-TAPE RETURN)

CALLING SEQUENCE: (NORMAL RETURN)

PURPOSE: PERFORMS INPUT READING

ERROR TESTS.

CHANNEL B TO RE-
MAIN IN OPERATION

APPROX. 1 SEC.
BEFORE CUTTING IT

FF WITH AN RDCB
D ASSUMING THAT

E LOG TAPE IS
UNNING AWAY

DECREMENTC.(IR1) BY 1

ERT
J -I IRI

I
-I

CHANNEL BIN OPERATION

T YES

J DELAY II CYCLES

!
C(IRI): 1

<

J RESET CHAN. B BACK-SPACE LOG TAPE

ENOT I
MAKE EOT NONZERO END-OF-FILE

ENIT

t

(_ANNELB)_m_END-OF-FILE
TRIGGER ON

J NO

I TURNOFF JREDUNDANCY

TRIGGERj IF ON

....... J EOT EXIT I

®

t
SET IMPAS NONZERO

RED
i LOGTAP[INCREMENT KRED

(REDUNDANCY COUNT)

t
C,
I PRINT _N-LINE

J PERSISTENT II REDUNDANCY I REDUNDANCYI COMMENT EXIT I

t
I STOP(HPR 26310)

I
OK

N.9..I_CHANNEL B END-OF- _

TAPE TRIGGER ON

j No
I ("-CHANNEL B END-OF-_

L FILE TRIGGERON ._ --_,_

No
(o_ANBREDUNDANCY¥_-_-_/_h

TRIGGER ON ,,,/ -I
0 -, KRED (REDUNDANCY

I COUNT). OBTAIN ADDRIOF LAST WORD READ IN.
ISUBTRACT ADDRESS OF
ILAST WORD EXPECTED,
ILEAVlNG RESULT IN AC

t
(aAQ:O

J BACKSPACE LOG TAPE. J
PRINT WRONG RECORD

SIZE COMMENT ON-LINE

NORMALRETURN

I I WRONG REC. SIZE I
""1 OR PERSISTENT

I REDUND. STOP

t

I POS. LOG TAPE TO I

READ NEXT REC.- J
TURN OFF REDUND.

TRIGGER, IF ON

......... [

®

TAKE
REDUNDANCY

EXIT

UP
t

TESTSENSESW,TCH2_......................ISW.2DOWNTERMINS.I
/ IrHIS PASS. UP TO BYPSI

_1 DOWN _,S REC:& CONTINUEi
FILE --t

MAKt- I::OF NONZERO.
TURN OFF CHAN. B

REDUND. TRIGGER, IF ON

............. J END-OF-FILE IEXIT

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Sheet 4 of 6)

3-8

MC 63-4

SAVE CONTENTS

OF INDEX

REGISTERS

INITIALIZE
ROUTINE WITH

ADDRESSES OF

INTERMEDIATE

BUFFER AND

OUTPUT BLOCK

IR1 IS THE i, j,
IR2 IS THE OUTPUT

WORD INDEX

IR4 IS TO INDEX 6

17-WORD BLOCKS

ACROSS THE PAGE

QVER

I I 'CflR4)-_ NUFF

, . J I (INDICATOR FOR 17-

' ' ' WORDS)
.._1710 -_ IR4 _ 8510 IR1

/ I I ;9;o• IR2
6 * IR4

J' DECREMENTC(I R4) BY 1

J INCREMENT INTERMED J
BUFFER ADDRESS (TO PICKI

UP (i + 1)ST WORD NEXT J
TIME THROUGH). INCRE- I
MENTOUTPUT ADDRESS I

i

t -., ITEST,NGFO_I
> _._(C(IR4): I .)JCONVERSION I

< 1 -- J FINISHED J

' ;ES'_O RE

REGISTERS

TO MAIN
...... PROGRAM

SUBROUTINE CONIT

TSX CONIT, 4
CALLING SEQUENCE:

(RETURN)
PURPOSE: CONVERT CONTENTS OF INTERMEDIATE

BUFFER OF BCD-OCTAL AND STORE

THEM IN APPROPRIATE POSITIONS OF

OUTPUT BLOCK.

I DECREMENTC(IR4) BY 1

BODY

iTH WORDOFjTH 17-WORD

BLOCK _ MQ (i = 1,2..... 17

ANDj= 1,2 10)

t
OCTAL CONSTANT TO GEN-

ERATE BCD BLANKS -, AC

t

t
AC SIGN +)

NO _
SET AC SIGN + AND

GENERATE BCD MINUS
SIGN IN AC

J C(AC) -*OUTPUT BLOCK

SHI FT LOOP tIU L.UN V t-I<,

J THE NEXT5 OCTAL DIGITS JTO BCD-OCTAL INSERT J
A BCD BLANK AT THE END J

f
I AC)_. OUTPUT BLOCK J

t
J SHIFT LOOP TO CONVERT

THE LAST 6 OCTAL DIGITS
TO BCD-OCTAL

t
J C(Aq -*OUTPUT BLOCK J

RESTR

TO PICK ,UP iTH V(C)RDOF THE
NEXT [(j + 1)STJ 17-WORD

BLOCKDECR,EMC(IR21BY;
/

_...ITESTING FOR END I
,_ C(IR4):1 ,,/ I OFOUTPUTLINEJ

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Sheet 5 of 6)

3-9

MC 63-4

SUBROUTINE WRIT

TSX WRIT, 4
CALLING SEQUENCE: (RETURN)

PURPOSE: PERFORM ERROR TESTS ON LAST OUTPUT TRANSMISSION

AND INITIATE CURRENT OUTPUT OPERATION.

®

WRITE f

J INCREMENT IC(PAGE) BY 1

t
<

_ CmAGEI:3)

>t
1 _ PAGE J

m

II

t
WRITE AN EJECT

RECORD ON
C11ITPl IT T*PI:

J INIT. WRITING OF CUR-
RENT OUTPUT BLOCK
ONTO OUTPUT TAPE

[O_HO_YJ
"T_

RETN T --

I RESTOREIR1 AND IR2 J

........

WRIT (_

I SAVEC(IR1)" C('R2) I

-i
JDELAYUNT,LCHANNELAD,SCONNECTSI

(TAPE TRIGGER ON

NO

(c_ANAREDUNDANCY_S'_._V:h
TRIGGER ON J

No
> (C(HOMMY_:s)

<t
(c("-oMNY):o)_

= COMPUTE I/O COMMAND I
WORD COUNT FOR THE I
INCOMPLETE BLOCK 1l

COUNT = 3 x C(HOMNY)-]Jl

ENOOT (_

I PRINT END-O F-OUTPUT-JTAPE COMMENT ON-LINEI

I (HpSTOP,o)J....

l
I SET NEW TAPE TO

LOW DENSITY, WRITE
CONTINUATION I.D.

ON NEW OUTPUT TAPE,
WRITE EJECT RECORD

ON OUTPUT TAPE.

1 --, PAGE

P_T
STORE THIS WORD I
COUNT IN ALL I/O I

COMMANDS FOR CURRENT J

OUTPUT BLOCK J

t
JlNCREMENTC(PAGE) BY 1 J

t
C(PAGE): 3)

> t
I ,_ PAGE I
J WR,TE2EJECTI

RECORD ON I

OUTP. u_r TAPE I

-1

J INIT. WRITING OF INCOM-
PLETE OUTPUT BLOCK

ONTO OUTPUT TAPE

t
DELAY UNTIL CHANNEL A I

J D SCONNECTS I

REPL

J STORE FULL WORD COUNT
! BACK INTO ALL I/O
I COMMANDS FOR CURRENT

I OUTPUT BLOCK

RE[E) (_

WRITE REDUNDANCY JREMARK ON OUTPUT
TAPE AND ON.LINE

t
IINCREMENT C(PAGE) BY 11

!
_ _PAGEI:3)

>t
I '_PAGEI

t
I WRITE AN EJECT

RECORD ON
OUTPUT TAPE

REWRT ;I _"

TO MAIN OUTPUT BLOCK USING
PROGRAM

ALTERNATE I/O
COMMAND LIST

ALLOW
OPERATOR
TO CHANGE

TAPES

®

3-i0

FIGURE 3-1. MXCHER PROGRAM FLOW CHART (Sheet 6 of 6)

MC _;._-4

3.2 PROGRAM TO PRINT MERCURY LOG TAPE IN OCTAL (MXPOCL)

MXPOCL reads the B6 tape produced from a Mercury run and prepares the
recorded information for off-line printing in octal. An option is provided to
permit: 1) printing the contents of the entire tape, 2) begin printing just before
the liftoff indication, or 3) printing only those entries time tagged within a
selected time interval.

The flow chart for MXPOCL is shown in Figure 3-2.

3.2.1 Input Requirements

Input to MXPOCL includes the B6 tape produced during a Mercury run.

3.2.2 Output Requirements

Output from MXPOCL is produced on A6, the tape used for off-line printing.

Output consists of ten 17-word blocks. The blocks are printed vertically,
and successive blocks are spaced across the page, left to right, in two rows per
log tape record. Marginal numbering of lines is provided to facilitate reading.
Each page of output represents two 170-word records from the log tape.

3.2.3 Method

The first record on the B6 tape is tested to ensure readability before proc-
essing begins; however, no attempt is made to interpret this information. Fol-
lowing the transfer of blocks from B6 to A6 and from A6 to the printer, redun-
dancy tests are made and EOF and EOT conditions are tested. Appropriate
comments are entered where necessary.

3.2.4 Usage

MXPOCL is available in squoze or absolute binary; however, neither the
squoze deck nor column binary deck produced from it may be read off line. To
run the binary version, the log tape must be placed on B6 and a blank tape on A6.

To run the squoze version, SOS must be on A1, blanks on A2, B1, and B2, in
addition to the tapes on B6 and A6.

a) Storage Required--2511 locations

b) Error Codes--Program stops occur each time an EOF, EOT, or per-
sistent redundancy is detected. On-line messages indicate the cause of
the stop and the action to be taken.

3-11

MC 63-4

e) Special Usage: The user has the option of operating this program in
one of three modes controlled by Sense Switch 2 and the console input
switches:

1) To print the entire log tape or any portion of it from the beginning,
SENSE Switch 2 must be up; the keys are not examined.

2) To print all information from the log tape, following the first block
time-tagged 10 seconds prior to liftoff indication, Sense Switch 2
must be down, and all keys must be up.

3) To print all information time-tagged within a certain time interval,
Sense Switch 2 must be down, and the desired starting time in
octal half-seconds must be entered into the keys, right justified.

When MXPOCL has positioned the tape, an HTR 61348 in 61338

occurs. The ending time, also in octal half-seconds, must be
entered into the keys, right justified. Press START to generate
an output for the desired time interval. When this is completed,

an HTR 57448 in 63008 occurs. A new starting time, which must

be greater than the last ending time, now may be entered into the
keys, and the process is repeated upon pressing START. If an
ending time is given which is not greater than its starting time,
MXPOCL prints the entire tape following the given starting time.
A summary of the various stops is as follows:

063568 HTR 63578 - Final Stop, B6 End-of-File

061418 HTR 61428 - Tape positioned. Enter ending time,
press start

063258 HTR 5744 8 - End of time interval. Set keys, press
start to do another.

057328 HTR 57028

057378 HTR 57028

062128 HTR 57028i

06345 8 HTR 622181

060738 HTR 57748

061718 HTR 61168

064008 HTR 2,4

062038 HTR 57448

065258 HTR 64778

065358 HTR 64778

B6 is unreadable

B6 is a BCD tape

End-of-tape on B6

Impassable redundancy on B6. Press
start to skip that record and go on.

- B6 End-of-file while positioning tape

- End-of-tape on A6. Put up new one,

press start

- Output (A6) redundancy. Press start
to rewrite

3-12

MC 63-4

Most stops are accompanied by on-line printouts.

The liftoff indication is the logged entry of Mercury on-line mes-

sage 21910 (3338) , stating that liftoff has been received. MXPOCL

does not actually search the high speed input for the liftoff bit.
One may use MXPOCL to find the first occurrence of any message
by replacing D340 OCT 333000000 (at alter number 556) with a con-
stant containing the desired message number in the decrement.

Similarly, the value (10 seconds) by which the program backs up
after finding the message number may be varied by changing the
constant A120 OCT 2000 (alter number 552) to a value containing
the desired number of half-seconds, displaced 3 octal digits to the
left of the low order of word A120.

3-13

MC 63-4

®

J ERROR STOP ON

EOF OR

IMPASSABLE

REDUNDANCY

3-14

XPOCL_

i

SETUP i

SET B6 TO PROPER []
DENSITY, TEST
READABILITY

_oop i
RESET EOF,

REDUNDANCY

TRIGGERS

i
SW 2 : DOWN

--J, YES

KEY@ -] NO

(CONSOLE KEYS):O

YES

I ISEARCH B6 FOR LOGGEDI

....... IINDICATION THAT MES- I

J SAGE NO. 3338= 21910 J

J HAS BEEN PRINTED I

OBOY i

I REWIND B6, OBTAIN]

TIME TAG, TM,

ASSOCIATED WITH

MESSAGE NO. 219

AQVI f

J SPACE B6 FORWARD

TO RECORD TIME

TAGGED APPROX.

10 SEC. PRIOR TO T M.

COUNT NO. RECORDS
_,KIPPFr)

I WRITEH_EADINGION A6

1_
RESET _--
I RI::51-T E]-IAN. A AND B I
I EOF AND REDUNDANCY II TRIGGERS AND WAIT
I TILL BOTH CHANNELS
I DISCC)NN ECT

/

;- ltBODY
/

J CLEAR FIRSTINPUT BLOCK

¢

ERROR STOP IF I

[B6 IS BCD OR

UNREADABLE

SERCH 1

I WRITE HEADINGON A6 J

FIND

SEARCH B6 FOR / I ERROR STOP ON

TIME TAG> VALUE 1 [EOF, EOT OR
IN KE-YS IMPASSABLE

REDUNDANCY

FIGURE 3-2. MXPOCL PROGRAM FLOW CHART (Sheet 1 o[6)

MC 63-4

LOOPI

I READAB6 J
RECORD INTO

FIRST INPUT BLOCK

_J.

LOOP2 - T

I ERROR TESTS ON 1

FIRST INPUT BLOCK ERROR

(SUBROUTINE ERT) RETURN

t NORMAL EXIT

J CLEAR SECOND J
INPUT BLOCK

i

J READ A B6 J
RECORD INTO

SECOND INPUT _,LO(_K

CONVERT THE DATA\

FIRST INPUT BLOCK

BCD-OCTAL, PREPARE_

FOR OUTPUT /

(SUBROUTINE CONIT)/

WRITE CONVERTED /

FIRST INPUT BLOCK

DATA ON A6

(SUBROUTINE WRIT)

LOOP3 t_"

_ ERRORTESTSON\
SECOND INPUT BLOCK)ERT)/ _:_uO_N(SUBROUTINE

/

t NORMAL EXIT

I CLEAR FIRSTINPUT BLOCK

t
J READ A B6 j

RECORD INTO
FIRST INPUT BLOCK

=t
ONVERT THE DATA

SECOND INPUT BLOCK_

BCD-OCTAL, PREPARE_

FOR OUTPUT /

(SUBROUTINE CONITy

f

I WRITE CONVERTED \

SECOND INPUT BLOCK_

DATA ON A6 /

(SUBROUTINE WRIT) /

I

FORCE

EXIT

FORCE
EXIT

LOOP

I

READ A B6 I

RECORDINTO ISECONDINPUT BLOCK

FIGURE 3.2. MXPOCL PROGRAM FLOW CHART (Sheet 2 o[6)

3-15

MC 63-4

ERROR

TEST

SUB-

ROUTINE

-.. MXPOCL_

J REW,_ANDB6j

I CLEAR FIRST IINPUT BUFFER

/_

LOOPI I-- J
READ RECORD I

INTO FIRST I

I INPUT BUFFER I I
LOOP2 =- | I

/ ERROR

TESTS /-_

t NO FILE

I I I
I READ RECORD I

INTO SECOND
INPUT BUFFER

CONVERT 1
FIRST INPUT

BUFFER

J DELAY UNTIL
CHANNEL A

DISCONNECTS

t
OUTPUT >FIRST BUFFER

LOOP3 t _

 RRORTESTS

j NO

CLEAR FIRST I IINPUT BUFFER

READ RECORD J
INTO FIRST

INPUT _VFFER

< OVRT>SECOND INPUT

BUFFER

DELAY UNTIL ICHANNEL A
DISCONNECTS,

t
_OUTPUT2NDBUFFER)

I

ERT

I
(

1 YES(
WRITE COMMENT (

ON-LINE AND
ON A6

t

HTR * + I

READ RECORD I
INTO SECOND

INPUT BUFFER

SAVE IR4
DELAY UNTIL

CHANNEL B
DISCONNECTS

REDUNDANCY) YESREr)

_ .o

EOF)

NO_

EOT _).y_ iS

ENOT _I

I WRITE COMMENT
ON-LINE AND

ON A6

I HTR * + 1 I

t
I REW'"D_ I

t
I WRITE COMMENT

ON-LINE AND
ON A6

HTR * + 1

t

BST B6

FIGURE 3-2. MXPOCL PROGRAM FLOW CHART (_heet 3 o[6)

3-16

ENOT 11

J SET EOT SWITCHNONZERO

TURN OFF

TRIGGERS

EXIT TO

FORCE PRINTING

OF LAST BLOCK

MC 63-4

YES C

I(
I (

EOTSWlTCH : 0)
.J

CHANNEL B EOT

JTRIGGER : ON

NO t

CHANNEL B EOF)TRIGGER : ON

t No
CHANNEL B

REDUNDANCY

TRIGGER : ON

_ NO

I ZEROOUT IREDUNDANCY COUNT

t
.0(AREWEL KHO)FoRACUT OFF TIME

YES t

/'_HAVE WE REACHED_
NO / THE DESIRED)

_,. TIME ,..,/

YES

I RESTORE INDICATOR IAND HALT

YES

RED _r

(ISTHISTHE)FI FTH TRY

_ NO

I INCREASE THE I
REDUNDANCY

COUNT

I WRITE COMMENT I
ON OUTPUT
TAPE, A6

t
I BACKSPACE B6 I

t
I TURN OFF EOT SWITCH, WRITE COM- I
MENT ON A6 AND ON-LINE. DISPLAY, I

IN IR1, TRANSFER ADDRESS FOR J

RESTART. HALT J

FILE

WRITE COMMENT
ON A6 AND

ON-LINE. TURN OFF
REDUNDANCY

TRIGGER, IF ON

J HALT]

YES

UNCLE 1

WRITE COMMENT

ON OUTPUT

TAPE, A6AND ON-
LINE. HALT

J NO BACK- J

ISPACESOGOI
"'/ ONTO I

INEXT RECORD I

FIGURE 3.2. MXPOCL PROGRAM FLOW CHART (Sheet 4 o[6)

3-17

MC 63-4

,:ONIT

i SAVE IR4iNITIALIZE

J 57810 _ IR4

BIGL t _"

I 1710 _ IR1

M_pL - |

J 510 _ IR2

LILL _ :

J CAL 1414141414008

t
J LDQ WITH iTH WORDOF iTH BLOCK

J LLS 2

YES

I SSP, SUB 20008

!

J SLW IN kTH WORDDECREMENT K

RQL I

CLEAR AC

LGL 3 LGL 3

ALS 3 ALS 3

LGL 3 LGL 3
ALS 3 ALS 6

LGL 3 ADM 60

ALS 3

I SLW IN kTH WORD
DECREMENT K

CLEAR AC

I LGL 3, ALS 3, LGL 3, ALS 3,

LGL 3, ALS 3, LGL 3, ALS 3,

LGL 3, ALS 3, LGL 3,

J bLW iN k_H WURDDECREMENT K

CLEAR AC

t
J TIX ON IR 2

OUT

i' DECREMENT K BY 2

t
TIX ONi

J OUT

(COMPL) IRI = COUNT WITHIN 17-WORD BLOCK = i

(COMPL) IR2 = COUNT OF 17 WORD BLOCKS : j

(COMPL) IR4 = COUNT OF OUTPUT WORD NUMBER = k

l [BLOCK *; END SIGNAL;................... OUTPUT BLOCK ADDRESS

I

[
I

I

I

i
"_ END SIGNAL = 0)

No

[SET END SIGNAL-: 0 I

i
ALTER ADDRESS

IN BLOCK

MARKED*

FIGURE 3.2. MXPOCL PROGRAM FLOW CHART (Sheet 5 of G)

3-18

MC 63-4

REDO

BACKSPACE A6

OVER THIS ENTIRE

BLOCK OF OUTPUT

REDO1 _J_

I PRINT ON-LINE]

MESSAGE FOR

REDUNDANCY, PRESS
START TO REWRITE

t

FIGURE 3.2.

WRIT

STORE ADDRESS OF

EACH LINE OF OUTPUT
IN I/O COMMAND

DELAY UNTIL

CHANNEL A NOT

IN OPERATION

END-OF-TAP E

TRIGGER ON

NO

REDUNDANCY

TRIGGER ON

WROT NO I:

INITIATE OUTPUT
TRANSMISSION

LUPE _I

J LOAD CHANNEL

WITH COMMAND

FOR NEXT LINE

YES

BAK

DETERMINE LINE I

COUNT AND BACKSPACE
OVER THIS ENTIRE

BLOCK OF OUTPUT

t ENOOT I _

_ WAS END OF TAPE_'_ I

ENCOUNTERED ON _,_. WRITE END OF FILE ANDI

THE LAST LINE J REWIND AND UNLOAD A6.1
DELAY UNTIL CHANNEL J

t NO DISCONNECTS, TURN OFFI
REDUNDANCY TRIGGER J< FINISHED)

YES_

REDUNDANCY)TRIGGER ON
WRITE ON-LINE J

MESSAGE TELLING

OPERATOR TO CHANGE

TAPES ON A6

HALT]

MXPOCL PROGRAM FLOW CHART (Sheet 6 of 6)

3-19

MC 63-4

3.3 PROGRAM TO PRINT REAL TIME CORE'D OUTPUT (MXILCO)

MXILCO interprets and formats for off-line printing the real-time core'd
output recorded on the B6 log tape by MTCOR and MSCORE. Panel information
may or may not be included.

The flow chart for MXILCO is shown in Figure 3-3.

3.3.1 Input Requirements

Input to MXILCO includes the B6 tape produced during a Mercury run which
contains information recorded (core'd) by RTCOR and MSCORE.

3.3.2 Output Requirements

Output from MXILCO is produced on A3, the tape used for off-line printing.

A heading will precede the first printout and identifies the MXILCO run.

Each core'd output is identified with: 1) the symbol given to RTCOR, 2) the
format code, and 3) the time tag. When panel information is included, it follows
the heading. After panel information, the core'd information is printed, left to

right, six words per line, with as many lines as needed.

3.3.3 Method

Each record of the B6 tape is tested for redundancy, EOF, and EOT. If an
abnormal condition is detected, appropriate comments are printed on line and
recorded on A3. When an EOT is detected before the EOF following the last
record, information from the final record will be processed and an EOT com-

ment will appear between core'd information in this record. When processing
is completed following an EOT condition, an INVALID DATA comment will ap-
pear, followed by a program stop.

3.3.4 Usage

MXILCO is a self-loading, relocatable routine listed on cards in row binary.

a) Storage Requirements--3408 locations, excluding BSS loader.

b) Error Codes--Program stops at each EOF, EOT, or persistent redun-
dancy. On-line messages indicate the cause of the stop and the action
to be taken. Input redundancies are reread three times before the
program stops.

3-21

MC 63-4

MXILCO_

I PRINT JOB HEADINGON OUTPUT TAPE

/ EXEC. MSILCO TO\
]OBTAIN A CORE BLI_

(1), (3), (4) /(1) EOF RETURN \

_(2) EOT RETURN]
_(3) REDUNDANCY RET/

_(4) BAD DATA RET./

I P.US I rPR,NT/OFF-L'NE)BLK'
J HEADING: SYMBOL & J

RANGE, FORMAT NO. J

AND TIME TAG J

t
INFORMATION NO

INCLUDED

__t YES

PRINT PANEL (OFF-
LINE): AC, MQ, SI,

KEYS, XRI, XR2, XR4

= DATA WORDS IN

THIS BLOCK : 0

> t

i NO (LEGAL FORMAT)

(2)

1
PRINT COMMENT OFF-I

AND ON-LINE AND J
CONTINUE ON TO |

PROCESS LAST REC. |
I

I PRINT COMMENT] sEY EESCT_FORMAT

OFF-LINE J J(1)OCTAL (7)

J, (I) I(2) DECIMAL FRACTION (61 I

| _ (3) DECIMAL INTEGER _ t
PR,NTKWORDS I4)DECR.&ADDR.AS V I

DECIMAL INTEGERS / EXECUTE \ /
IN OCTAL FORMAT (5) FLOATING f_ / MSFLOT TO \ ,L

I , I 1(6) FIXED TO FLOAT. ""---'l _/ =/n^T V _lyFn '_
- I I(7) FLOATINGTO FIXE[I \ / / \

3 4 POINT EXECUTE. /211 I() 1(4)J X FRACTIONS// MSPHIXTO X

1 . J L_. _. I _ I _ FIXK FLOATING ,/)
I Y I -- | \ " PONTWORDS /

/ EXECUTE \ / EXECUTE \ / EXECUTE \ wP_R/NTKN ' \ /

MSFRAC TO MSINTR TO MSPLIT TO -- --

PRINT K WORD PRINT K WORDS_ (#EE_ RA#MAEI'NETT/_D"_ I I:LOATING FORM I l

\ AS DECIMAL / \ AS DECIMAL / _- --,_,UUKI- bb Ul- T\ _,_,_.,ONS/ \ ,NTEGERS/ \ EACHWORD/ ..___.___yVALUESOUh
OF RANGE J

[_ YESt
I I IN 'T' FORMAT] PRINT RELATIVE '

ISYMBOLI C LOCATION
I I lAND FLOATINGVALUE

1 I FOREAC_ONE, I OUTOFIRANGE

FIGURE 3-3. MXlLCO PROGRAM FLOW CHART (Sheet 1 of 6)

3-22

MC 63-4

,SFRAC

i

SET UP CALLING I

SEQUENCE FOR IFRACTION CONVERSION

ASINTR

R

SET UP CALLING i

ISEQUENCE FOR

INTEGER CONVERSION

I SAVEIR IAND2 J

t

I K = NO. OF WORDS TO IBE CONVERTED TO
IR1 ADDRESS OF

DATA _ "WORD"

INITIALIZE ADDRESS OF
OUTPUT BLOCK IN

CALLING SEQUENCE.
CLEAR IR2 DELAY
UNTIL CHANNEL A

DISCON,_TION

WORD |

I NEXT DATA WORD -* AC J

< EXECUTE_
CONVERSION
SUBROUTINE

(B2DFR OR
B2DIN)

L INCREMENT ADDRESS

OF OUTPUT BLOCK
BY 3. INCREMENT

C(IR2) BY 1

i
HAVE ALL WORDS) NO

BEEN CONVERTED. 1YES rTRANS

I C(IR2) x 3 -_ COUNT I (
FIELD OF I/O C(iR2) : 6

COMMAND

t_ t >-
ONTAPE A3 ON A3 (18 WORDS *

I_R ONE LINE OF PRINTING)
J RESTORE 1 AND 2 J I
JDELAY UNTIL CHANNEL A I 1J DISCONNECTS I

I IOVERFLOW, IF ON

FIGURE 3-3. MXILCO PROGRAM FLOW CHART (Sheet 2 o[5)

3-23

MC 63-4

I
INCREMENT]C(IR2) BY 1

t

DECREMENT JC(IR1) BY 1

t

BCD BLANKS AND LOW I
ORDER MINUS --) FIRST

WORD OF DUTPUT BLOCK

B2DF,_

I SAVE CflR1), C(IR2),

C(AC). SET AC SIGN +,

SHIFT LEFT 1 AND

PLACE 1110 IN IR1

C C(AC) : 0

0 _ IR2

>(

SUBTRACT BINARY l

EQUIVALENT OF I0 -i

FROM C(AC) •
[j = 12- ¢(IRI)I

t
C(AQ : 0) =

i

t
ADOB,NARYEQUIVALENTI

10-' TO C(AQ J

t

I OBTAIN PROPER BCD DIGIT

BASED ON C(IR2) AND
STORE IN ITH WORD OF

"ApJ;)VP" BLO(_K

. t

THAT = _

l OBTAIN ADDRESS OF

_WORD OUTPUT BLOCK
FROM CALLIN SEQUENCE

AND STORE

t
()>-< ORIGINAL QAC) : 0

I _= I
I LOOP TO ASSEMBLE BCD I

DECIMAL POINT AND BCD |
DIGITS IN "ADDUP" I

THROUGH "ADDUP + 10" I
AND STORE IN SECOND ANDI

THIRD OUTPUT WORDS I

1
l RESTORE C(IRI), C(IR2) J

OVE_
OBTAIN PROPER BCD

DIGIT BASED ON
_IR2) AND STORE
IN iTH WORD OF
"ADDUP" BLOCK

ZOUT I _

STORE ZERO IN ALL I
REMAINING UNUSED WORDS I

OF "ADDUP" BLOCK I

I
I

BCD BLANKS _ FIRST l
WORD OF OUTPUT BLOCK I

FIGURE 3.3. MXILCO PROGRAM FLOW CHART (Sheet 3 o[5)

I

i

3-24 i

MC 63-4

J INCREMENTC(IR2) BY 1

I

1
J DECREMENTC(IR1) BY 1

B2DIN

I SAVE C(IR1), C(IR2), C(AC);SET ACSIGN +; 11 _ IR1

=

t
C(AC) 0

I

0 _ IR2 J
i

SUBTRACT BINARY EQUIV- I

ALENT OF 10i FROM C(AC) I(WHERE i = C(IR1 I-11

t
>(CCAC,: 0):

t

I ADD BINAR.Y EQUIVALENT JOF 10' TO C(AC)

t
OBTAIN PROPER BCD DIGIT J

BASED ON C(IR2) AND J
STORE IN iTH WORD OF I

"SUMIT" BLOCK J

THEM = t _

OBTAIN ADDRESSOF 3.WORD J

OUTPUT BLOCK FROM CALLINGJ
SEQUENCE AND STORE. BCD J

BLANKS _ FIRST OUTPUT WORDI

ERSTN t

J BCD BLANKS _ FIRST JOUTPUT WORD

t
LOOP TO ASSEMBLE BCD J

DIGITS IN SUMIT THROUGH I
SUMIT + 10 INTO SECOND ANDI

THIRD OUTPUT WORDS J

t
W ORIGINAL C(AC) : 0

j SETUPBCO J
MINUS IN LOW

ORDER AC
i

:--|=
LOOP TO REPLACE LEADING

ZEROES WITH BLANKS AND
PREFIX SIGN CHARACTER

TO LEFT OF HIGHEST
ORDER NONZERO D G T

[,T t =RESTORE_,R_,aIR_ I,
B

ENDIT

J STORE ZERO IN ALL

REMAINING UNUSED

WORDS OF " SUMIT' BLOCKJ

ALLOS _r

FILL SECOND J

IOUTPUT WORD WITH I

i___(SIGH POSITION h

OF ORIGINAL
C(AC) : 0

I FOUR BCO BLANKS, J FIVE BCD BLANKS,
BCD MINUS, BCD0_ BCDO _ THIRD

THIRD OUTPUT WORD OUTPUT WORD

t

J PUT60 J
(BCD BLANK) IN

LOW ORDER AC

FIGURE 3-3. MXILCO PROGRAM FLOW CHART (Sheet 4 o[6)

3-25

MC 63-4

J SAVE IR 1, 2, 4

OUTP (_

J WRITE LINE ON A3

O_ IR 1 J

DELAY UNTIL I

CHAN A

DISCONNECTS

HAVE K WORDS) NOBEEN DONE

YES

GO TO TERM

J STORE COUNT OF

NO. OF WORDS IN

DATA BLOCK,-1 IN

DECR. OF ENTES

J J INITIALIZE ROUTING

WITH ADDR OF DATA

BLOCK, ADDR AND

INDEXfOF OUT-OF-

RANGE BLOCK

I I
1

HOOP "_I ¢ Q

ith DATA WORD

_MQ

(i = 1, 2, ... k)

1
SHIFT CHARACTERISTIC

TO AC. SET AC

+ SUBTRACT 2111)8

I

EXPONENT= 0) YES

f _ NO

"N YES

EXPONENT < 0 ._

NO

STORE EXPONENT I

IN ADDRESS OF

FOLLOWING SHIFT

•

SHIFT TO POSITION

VALUE WITH WHOLE

NO. IN AC; FRACTION

IN MQ; C(MQ) _ TEMP

BZDIN

TO CONV. SIGNED_

INTEGER IN AC TO)
_,CD. RESULT STOR- /

ED IN CUBE THRU/

CUBE + 2 /
F

I

C(TEMP) _ AC I

SET AC SIGN PLUS I

/ BZDFR \
f TO CONVERT \
POSITIVE FRACTION \

TO BCD. RESULT/

_STORED IN CUBE + 3/

\ THRU CUBE + 5/

FRAP

INTERCHANGE

AC AND MQ

FRANO 1

I STORE ADDRESSIN I
FOLLOWlNG SHIFT

_ e[YES (EXPONENT<-8)

IN NEXT AVAILABLE INTERCHANGE

POSITION OF AC AND MQ

OUTPUT BLOCK

SHIFT RIGHT

TO POSITION

FRACTION IN AC

FRAP1 _1"

PUT BLANKS WITH J

APPROPRIATE BCD LSIGN IN CUBE + 2,
BLANKS IN

CUBE, CUBE+ 1
I

L

FIGURE 3.3. MXILCO PROGRAM FLOW CHART (Sheet 5 of 6)

3-26

D

I CUBE + 4 -* AC

I LONG RIGHT SHIFT
6, INCREMENT

IR4 BY 6

MQ__AC)

No
CUBE + 4 _ MQ,
CUBE + 2 -' AC,

LONG RIGHT SHIFT
BY NO. PLACES =

C(IR4). STORE MQ IN
3RDWORD OF NEXT

AVAILABLE POSITION
OF OUTPUT BLOCK

J CUBE+2-,MQ. J
CUBE + 1 -, AC. J

SHIFT AS ABOVE, |
| STORE MQ IN2ND |
J WORD, NEXT AVAIL. |

IPOS. OF OUTPUT BLK._

CUBE --*AC

I

LOCAT (_

I 0-* IR4, MQ JCUB E + 5 --, AC

1
u

AC= 0)

_ NO

I LONG RIGHT i
SHIFT 6, INCREMENT

IR4 BY 6

l
Mo _Ac)

NO
CUBE + 5 -* MQ |
CUBE + 4--,AC I

LOGICAL RIGHT
SHIFT BY NO. OF

PLACES = C(IR4)

STORE ME) IN 3RD
WORD OF NEXT

AVAILABLE POSITION
IN OUTPUT BLOCK

CUB E + 4 -, MQ
CUBE + 2 -_AC

LOGICAL RIGHT
SHIFT BY NO.
OF PLACES=

C(IR4)

STORE MQ IN 2ND
WORD OF NEXT

AVAILABLE POSITIOh
IN OUTPUT BLOCK

I

CUBE + 2 -_ MQCUBE + 1 -, AC

CUTIN

LOGICAL RIGHT ISHIFT BY NO. OF

PLACES = C(IR4 I

STORE MQ IN FIRST
WORD OF NEXT

AVAILABLE POSITIOF
IN OUTPUT BLOCK i

INCREMENT

IR1, 2 EACH
BY 1

ENTES _ NO

EN DONE_

YES

MC 63-4

GENERATE NO.
OF WORD OUTPUT

ON FINAL LINE.
STORE IN COUNT
OF I/O CONTROL

WORD

I WRITE LINE ION A3

J RESTORE IR'S I

DELAY UNTIL
CHAN A DIS-

CONNECTS. TURN
OFF OVERFLOW

IFON

FIGURE 3- 3. MXILCO PROGRAM FLOW CHART (Sheet6 o[6)

J 3-27

MC 63-4

3.4 SYMBOLIC TAPE UPDATINGPROGRAM(COL8ER)

COLSERis a multipurpose utility routine used to maintain and manipulate

symbolic decks in large-scale computing systems using SOS.

The COL8ER flow chart is shown in Figure 3-4.

3.4.1

a)

Input Requirements

B4 to B10 tapes (either symbolic tapes or BCD
listing tapes) to be modified.

b) B3 tape--modification packet containing:

Special control cards (optional)

Job card (standard SOS format and optional)

Date card (standard SOS format and optional)

Comments cards, columns 8-13 blank (optional)

CPL or CPLRB (standard SOS format and
optional)

MACRO definition cards and associated

programmer macro skeletons

ALTER control cards and associated symbolic
inserts

CHANGE control cards and symbolic inserts

GROUP control cards (see meaning below)

ORDER control cards (see meaning below)

PULMAK control cards (see meaning below)

CARD control cards (see meaning below)

GO control card

c) PAUSE card must not be present.

d) NO cards may be read on-line.

These cards, if

present, must be
in this order.

These cards or

packets of
cards may be
in any sequence.

3.4.1.1 Card Definition

a) MACRO--same meaning as with SOS. The redefinition of a programmer
macro with MACRO causes the old definition to be removed automatically.

) 3-29

MC 63-4

b)

c)

ALTER--COL8ER interprets the ALTER instruction in one of two ways,
depending on whether the particular COL8ER update is in the normal

mode (key 1 up) or the complement mode (key 1 down). In the normal
mode, ALTER has the same meaning as it does with SOS. In the com-
plement mode, ALTER has a different definition. The cards between
the numbers in the variable field of an ALTER are recorded on tape

rather than deleted. For example, assume the following instructions
and ALTER numbers appear on a tape to be updated by COLSER:

300 LXA CW, 2

301 CLA X, 2

302 SUB Y

303 STO Z

304 TIX *-1,2,1

If a programmer gives ALTER 301, 303 followed by the instruction
PXD 0,2 the following output results if in the complement mode:

CLA X, 2

SUB Y

STO Z

PXD 0, 2

In the complement mode, only the instructions within the numbers in
the variable field of the ALTER are read out. Therefore, since the
instruction of ALTER number 300 is not in the field of the ALTER, it

is skipped.

In the normal mode everything is read out, except the alter cards
whose numbers appear in the variable field of the ALTER card.

Normally the complement mode is used only to obtain sections of a
symbolic tape. These sections can be used to create MOD(B3) tapes

for subsequent COL8ER runs.

CHANGE--the CHANGE card is distinct from SOS. Relative numbers

in the variable field count all cards, not just machine instructions.
Thus, CHANGE A + 4 means "insert the following cards after the
fourth card following symbolic location A, not necessarily the fourth
location after location A." (Some of the intervening cards might gen-
erate no locations, such as remark cards, or might generate several

locations, such as MACRO cards.)

3-30

MC 63-4

d)

CHANGE may refer to cards prior to the one containing the first loca-
tion symbol in the program by regarding the first symbolic card in the
program as number zero and by using + N as one of the parameters in

the variable field of CHANGE (N means the Nth card in the symbolic
deck). For example, suppose that the first few instructions of a pro-

gram are:

GO

AXT J, 1

SXA K

RTBA 1

RCHA CW

TCOA *

TEFA * + 2

TRA GO

To take out the instructions from GO-1 to GO+3, use CHANGE + 1,

GO + 3. {Note: The variable field of a CHANGE is limited to starting
and ending addresses each containing at most one symbol plus one
decimal number. Example: CHANGE A; CHANGE A + 2,A + 4;
CHANGE A, + 10, CHANGE + 10.)

CHANGE, when operating in the complement mode, inserts rather
than deletes.

ORDERmthe variable field contains two alter numbers; the symbolic

cards between these numbers {inclusive) will be inserted on the up-
dated symbolic tape at the point where ORDER is placed. ORDER is
normally used to physically move programs or sections of programs
on a symbolic tape. For example, suppose a tape contains five pro-
grams called A, B, C, D, and E. Each program has 200 alter numbers

and are presently in the order of A, B, C, D and E on the tape. To re-
arrange the programs so that the physical order on the update tape

(including one duplication) will be A, C, E, B, C, and D, the following
COL8ER instructions are used:

ALTER 201, 1000

ORDER 401_ 600

ORDER 801, 1000

(Take out programs which will
be reordered so that they are not
duplicated on the output tape--see

paragraph e below

(Output program C after program
A)

(Output program E next)

3-31

MC 63-4

e)

f)

g)

h)

i)

ORDER 201,400

ORDER 401,800 (Output programs C and D next)

Two important things to note in any COL8ER run is that COL8ER
expects an ALTER or CHANGE to be the first instruction; if programs

are being reordered and are not altered out, they appear twice on the
output tape. In the above example, programs B, C, D and E (alters

201--1000) must be altered out since they are being reordered. ORDER
has exactly the same meaning whether in normal or complement mode.

Third Parameter (Optional)--a third parameter may be given if an
INPUT card is used. This third parameter specified which deck
ORDER or GROUP extracts the cards from. If this third parameter is

not given, the base deck is used. Example: ORDER 5,50,4 GROUP
A, B,4. Both cards refer to the fourth deck on the input tape(s). By
use of this third parameter, multiple jobs may be joined in one pass.

GROUP--the variable field of a GROUP card will look like that of a

CHANGE card, except for the optional third parameter explained above.
GROUP works exactly like ORDER, except that the variable field of a

GROUP contains symbols (or, as in CHANGE, plus numbers which are
relative to the first symbolic card in the programs) while ORDER con-
tains alter numbers. GROUP has exactly the same meaning whether in
normal or complement mode.

PULMAK--the variable field of a PULMAK card contains the name of

one programmer's macro which is not retained on the updated symbolic
tape. For example, "PULMAK POLY" removes the programmer
macro POLY during a COL8ER update. PULMAK is used to remove
programmer macros, not to redefine them. See the MACRO instruc-
tion in this section to redefine a programmer macro.

CARD--CARD control cards must appear in pairs. Any other control
cards occurring between them are put onto an output rood packet for
later use by SOS or COLSER. Only control cards occurring outside
pairs of CARD control cards are treated as commands to COLSER it-
self and affect the selection of items to be put on the symbolic output

tape.

The CARD instruction is most frequently used while running COL8ER
in the complement mode. The following instructions could be used for
a COL8ER run (complement mode) to create a mod tape (B3) for a sub-

sequent COL8ER run to update a symbolic tape:

ALTER 21,28

CARD

3-32

MC 63-4

ALTER 7,8

ALTER 20,23

CARD

CHANGE A + 2,A + 9

CHANGE B, B+ 8

AXT N, 2

CARD

ORDER 300,350

ORDER 610,640

ALTER 17,18

CARD

The output on this run would be:

ALTER 7, 8

A LTER 20, 23

Instructions brought in by ALTER 21,28

Instructions brought in by CHANGE A + 2, A + 9

Instructions brought in by CHANGE B, B+8

AXT N, 2

ORDER 300,350

ORDER 610,640

ALTER 17, 18

Note that in the complement mode, if an ALTER or a CHANGE card is
followed immediately by a CARD, those cards up to the next CARD
precede cards brought in by the ALTER or CHANGE card.

Special Control Cards

INPUT--the address of the INPUT card refers to the number of jobs on
each input tape in the following manner. Assume the user has six in-
put decks: two on the first tape, one full deck and the start of another
on the second tape, the balance of the deck and another full deck on the

third tape, and one job on the fourth tape. The INPUT card address
becomes: 1, 2, 3, 4, 4, 5, 6, 6. The first two numbers state that the

tape on B4 begins with deck 1, and that deck 2 is the final deck. The

3-33

MC 63-4

b)

c)

d)

e)

f)

next two numbers indicate that the tape on B5 begins with deck 3 and
deck 4 is the final deck. The next two numbers indicate that the rest

of deck 4 is at the beginning of the tape on B6 and that deck 5 is the
final deck. The final two numbers indicate that deck 6 is on B7. The

INPUT card is used once for all successive jobs and is placed on the
first mod deck. A new INPUT card indicating the deck allocation on
the output tapes is punched when SOS is called.

BASE--the address of the BASE card specifies which input deck will be

updated. If the base is not specified, the deck after the last one up-
dated becomes the base deck. Example: BASE 3 means deck 3 is up-
dated.

ONSWCH--the address of the ONSWCH card specifies which switches
will be simulated as on. Example: ONSWCH 1,4 means that switches
1 and 4 are on; others off. ONSWCH 0 means that all switches are
simulated as off. More than one ONSWCH card may be given.

KEYS--the address of the KEYS card specifies which keys are simu-
lated as on. Example: KEYS 400000000000 means that the sign key is
on (-0 not acceptable). KEYS 122602 indicates that a date card is to
be formed with this information. KEYS 0 simulates all keys off. Only

one KEYS card may be given per mod deck.

CONT--causes the program to begin another COL8ER pass after the
present one is completed without halting between passes.

SOS--causes the program to load SOS after a COL8ER pass is completed
without halting after the COL8ER pass.

3.4.2

a)

b)

c)

d)

Output Requirements

A3 to A9 (as many as required)--updated symbolic tape regardless of
whether the input tape was symbolic or a BCD listing tape. The A3
tape may contain a SQZ pseudo-op followed by a squoze deck if these
were present on the input symbolic tape and were not deleted by the
mod packet. However, an input BCD listing tape may not contain a

SQZ, since what follows would be the symbolic equivalent of the squoze
deck, and it is the function of SOS to construct a squoze deck from the
symbolic.

C3 to C9 (as many as required) optional--a duplicate of A3.

Punched Cards--deck of temporary modifications {optional).

A lO--tape of temporary modifications (optional, but may not be
selected concurrently with punched card output).

3-34

MC 63-4

3.4.3 Method

COL8ER can perform any of the following functions:

a) Update a symbolic tape for input to the SOS compiler.

b) Create a symbolic tape from the BCD listing tape (A2) of a squoze deck.

c) Create a modification packet (on cards or tape) which may be used
either as input to COL8ER for modification of another symbolic tape,
or together with an existing squoze deck as input to SOS for an execu-
tion run.

d) Combine multiple decks in one pass.

Updating modification decks and symbolic tapes may include reordering
and/or duplicating sections of existing programs as well as the conventional

changes possible with SOS (insertions and deletions).

A single run of COL8ER yields an updated symbolic tape, containing rou-
tines from various programs if these routines are available on BCD tapes (or
cards).

COL8ER can be modified to process a symbolic tape or a compilation listing
tape in many ways. For example, it can be modified to search either of these

tapes for desired symbolic information and produce output in a given format,
such as listing all references to 6-letter characters, all transfers to 6-letter

characters, all ORG cards, all transfers to subroutines with the 2-letter prefix
"MS", etc. It can also be modified to produce storage maps (in list form) and to
sum up storage requirements of various types of routines within a large system.
Some of these modifications are available under a spearate name such as
MXNDKT and CORMAP.

3.4.4

a)

Usage

Operator Procedure:

i) Ready the on-line card reader with the absolute binary deck (with
self-contained loader) of COLSER. COLSER is in the form of an

SOS-produced absolute (as distinguished from relocatable) row-
binary deck with 23 instructions per card. Alternatively, mountthe
C1 Utility Tape and ready the on-line card reader with the
COL8ER call card.

2) Ready the input tapes (B3, B4, Etc.), the output units (A3, A4, etc.,
as needed), the optional tapes (C3, C4, etc., as needed), and the
A10 tape or card punch.

3-35

MC 63-4

3) Setsense switches and MQ-keys to specify options desired, as
listed under c5 below.

4) Press CLEAR and LOAD CARDS.

b) Halts and Error Codes:

1) Stop at 00003 means a serious error exists either in the machine,
peripheral equipment unit, in COL8ER itself, or in the object pro-
gram. The program will not restart, dump core, save tapes, and
get off the machine.

2) Stop at 00004 is the normal halt. Press START to

a) Go to SOS if the MQ sign key is up.

b) Perform another COL8ER run if the MQ sign key is down.

3) Stop at 00005 indicates a minor delay, such as a full tape reel.
Adjust, and press START.

c) Special Usage:

1) An advantage of the CARD CONTROL card: by using CARD care-
fully, a mod packet may be constructed as the output from COL8ER
which will provide directions for joining multiple symbolics with a
few runs.

2) Complement Mode: in the complement mode, ALTER and CHANGE
incorporate rather than delete. All symbolic cards not within an
ALTER or CHANGE field are deleted. Thus, if the programmer
wants to extract a few routines from a large program, he will

probably want to use the complement mode. If he wishes to insert
the extracted routines into another program, he may follow the
ALTER or CHANGE with CARD, the ALTER or CHANGE for the
new program, and another CARD. Thus, the output from the first
pass will be a mod packet for a second pass.

The output from a complement run will appear in the order of the
symbolic cards of the original program. If rearrangement is nec-
essary, ORDER and GROUP can be used.

With key 9 down, the symbolic definitions of all macros on the in-
put tape are incorporated in the output from a complement mode
run.

Note: In the complement mode, all mods are treated as permanent.

3-36

Ylk OO--"k

3)

4)

Temporary and Permanent Modifications: the letter "T" or a
blank in column 72 of an ALTER or CHANGE card indicates that a

new ALTER card will be punched and followed with the same mod

packet. These mods will be used temporarily for SOS execution
runs. Permanent mods, indicated by a letter P in column 72 of an

ALTER or CHANGE card, will be included in the updated symbolic
tape.

FIELD Run: the address of the FIELD card specifies that all mods
with alter numbers lying in the range of the field will be automat-
ically inserted in each mod packet for the COL8ER passes. The

FIELD card must be the first card on the mod deck placed on A10.
Key 18 is placed down to indicate a FIELD run. A JOB card must

appear in the deck for each job used. No file mark is placed be-
tween jobs. The FIELD pass puts a new mod deck on B3 which is

used for the successive COL8ER passes. The deck may have
MXMRGE cards in it if desired.

Example:

MXMRGE Type Deck

FIELD 1,500

INPUT 1,1,2,2

CONT

ONSWCH 1

Equivalent

FIELD 1,500

INPUT 1, 1,2,2

CONT

ONSWCH 1

JOB ONE

LG

MOD

ALTER 315, 317

CLA SMTNG

ENDMOD

GO

SOS

ONSWCH 1

JOB TWO

LG

MOD

JOB ONE

ALTER 315, 317

CLA SMTNG

SOS

ONSWCH 1

JOB TWO

ALTER 600

ADD OTHR

ALTER 15

STL LSWR

ALTER 600

3-37

MC 63-4

5)

ADD OTHR

ALTER 15

STL LSWR

ENDMOD

GO

PAUSE

The deck produced on B3 by either deck is:

INPUT i,i,2,2

CONT

ONSWCH 1

JOB ONE

ALTER 315, 317

CLA SMTNG

ALTER 15

STL LSWR

End of File

SOS

ONSWCH 1

JOB TWO

ALTER 315, 317

CLA SMTNG

ALTER 15

STL LSWR

ALTER 600

ADD OTHR

End of File

COL8ER Sense Switch Options

1 up

down

2 up

down

Output to A3, unless SS5 overrides

Output to A3, unless SS5 overrides, and C3

Normal

SOS monitor control cards not read out

3-38

MC 63-4

3

4

up

down

up

down

up

down

up

down

Normal

Duplicate of A3 printed on-line

Write EOF on output tapes and rewind

Leave output tapes positioned after last record

Output to A3

Output to card punch (SS5 should not be down if SS6
is up

Punch temporary mods

Temporary mods to A10

6) Key Options (Committed at the start of each COL8ER run)

sign up

down

1

2

4

up

down

up

down

up

down

up

down

up

down

up

down

up

down

up

down

After halt at 4, press START to go to SOS

After halt at 4, press START for another COL8ER
run

Normal mode

Complement mode

Blank column 72 of ALTER or CHANGE indicates

temporary mod

Blank column 72 of ALTER or CHANGE indicates
permanent mod

Normal mode

All mods regarded as permanent

A3 output is in BCD

A3 output is in binary for off-line punch (not neces-
sary with 1401)

A10 output is in BCD

Output is in binary for off-line punch (not necessary
with 1401)

Normal mode

Duplicate B4; no B3 present

Normal mode

Temporary mods not read out

B3 and B4 rewound at end of run

B3 and B4 left at start of next file for stacked

COL8ER runs

3-39

MC 63-4

7)

9

i0

II

12

13

14

15

16

17

18

19-23

24-29

30-35

up

down

up

down

up

down

up

down

up

down

up

down

up

down

up

down

up

down

up

down

Programmer macros not output in complement mode

Programmer macros output in complement mode

No rewind of output tapes before run

Rewind output tapes before run

Normal

BCD records cut to 13 and no SQZ can be used for

off-line punch (not necessary with 1401)

Normal

CARD not recognized

Normal

PULMAK not recognized

Normal

GROUP not recognized

Normal

ORDER not recognized

B4 not rewound before starting

B4 rewound before starting

B3 not rewound before starting

B3 rewound before starting

Normal

FIELD card expected at beginning of mod deck
which is on A10

Month or day in octal

Day or month in octal

Year less 1960 in octal

Coding Information--though usually written to produce input to SOS
or COL8ER, where the input generally is the Project Mercury
Programming System or some phase of it, COL8ER is an independ-

ent utility program. Since it is fast-loading and makes optimum
use of 7094 I/O speeds, COL8ER itself occupies lower core mem-
ory and need not be cleared when its outputting is completed and an
SOS or COL8ER run is to be made which will process that output.

Pressing START after the normal COL8ER stop (at location 00004)
will cause either SOS or COL8ER to be called in, as the sign MQ-

key on the IBM 7094 console was up or down, respectively.

3-40

MC 63-4

d) Checkout Status--by using a BCD listing tape of a squoze deck as the
B4 input to COL8ER, the symbolic tape used to compile that deck may
be reconstructed (on A3). However, several restrictions apply

1) Restrictions due to SOS:

(a) Programmer macro skeletons do not appear on the SOS listing.
Therefore, they must be made available to COL8ER on a B3
mod packet tape so as to reappear on the reconstructed sym-
bolic tape.

(b) A symbol which is never referenced appears in the dictionary
at the end of an SOS listing with an asterisk next to the page
number. A doubly-defined symbol is noted at the start of the

SOS listing. However, if there is a doubly-defined symbol
which is never referenced, it neither is listed in the dictionary
nor printed at the start of the listing. Instead, two dictionary
entries are created in the squoze deck. To ensure that the
original and reconstructed symbolic tapes are really identical,
the squoze decks should be compared to discover a situation
such as this. The comparison should be performed with a
program such as SUMARY. Also, the BCD listing tapes
should be compared (for instructions only, not commentary)
with a program such as COMPAR.

2) Restrictions within COL8ER

(a) One of the SOS listing pseudo-operations, SPACE, may have
a variable field N. Thus, "SPACE 3" would create three suc-
cessive blank lines on the listing, using only one alter number.
COL8ER, however, will generate N SPACE l's, each produc-
ing a blank line, but each taking an alter number. This will

cause the reconstructed symbolic tape, when compiled, to
generate an incorrect number of alter numbers. This can be
foreseen and prevented by adding to the B3 mod packet an
ALTER deleting the SPACE N from the listing tape and rein-
serting it.

(b) SOS programmer macros can use parameters to generate
location symbols. However, if a parameter is used to gener-
ate a symbol for the first instruction generated by the macro,
this symbol appears on the listing tape every time the macro
is used, since the listing tape shows the first instruction gen-

erated by each macro. However, COL8ER attempts to attach
this symbol to the location field of the MACRO card (since
this is also a legitimate possibility), and SOS will, therefore,
find one symbol being defined twice for one location. This is

flagged as an error, although correctly compiled.

3-41

MC 63-4

A further precaution: COL8ER depends upon the format of the
SOS-produced BCD listing tape. If future changes to SOS
modify this format in any detail, COL8ER must be changed to

retain compatibility.

3-42

MC 63-4

READ IN

COL8ER

IS THERE A

MOD CHECK

RESET

PROGRAM
SWITCHES

I IIDENTIFY

KEY OPTIONS

1

JETNIK _, YES STL
|

YES

f _ PUT CO/_ON MODS ._

IS IT A IN EACH MOD

,,_FIELD RUN PACKET AND PLACE

SSW STATUS TO OUTPUT SSW

PRINT FORMAT STATUS

MESS7 MESS1

\ READ A RECORD OUTPUT SSW BUFFERS AND

FROM B6 OPTIONS INDICATORS

STAT1

UERR _ FORCE
NOTE NO CHECK

ON-LINE FOR TEMPS

CTINK

JETNK1 _i< STL

NOTE CALK1
ON-LINE

STAT2

NOTE

ON-LINE

STAT3

A3 OUTPUT

;o
FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 1 of 51)

3-43

MC 63-4

_

GET RECORD FROM

MOD TAPE

YES

_ _ NO

(_YESIS IT CONT CARD

_ .o

IS IT SOS CARD

NO

IS IT BASE CARD

IS IT KEYS CARD

.o

IS IT ONSWCH CARD

NO

(J

YES

YES

YES

RAMP4

FILL TABLE SHOWING
WHAT JOBS EACH
TAPE CONTAINS

RAMP5

CHANGE HTR TO TRA
TO INITIALIZATION

AT ULE + 1

RAMP9

CHANGE HTR TO
TRA TO CALL IN

SOS AT ULE+I

RAMP6

FILL KEYS
=" SIMULATE

r j BUFFER

RAMP7

_[FILL SWITCH
r SIMULATE

J BUFFER

RAMP8

I POSITION TAPE
_- TO REQUESTED

FILE

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 2 of 51)

3-44

_MC63-4

JETNK2 (_

A0 OUTPUT
IN BIN

ly o
JETNK3 _"

OUTPUTTEMP MODS

rES

JETNK4

OUTPUT

TEMP MODS

YES

JETNK5

REW B3, B4 AT
END OF RUN

YES

JETNK6

REW OUTPUT
TAPES AT START

STAT4

UERR
NOTE

ON-LINE

STATS

UERR
NOTE

ON-LINE

STAT6

STL CALK2

I

STL CALK3

UERR
NOTE

ON-LINE
STL CALK4

CHANGE REWS TO

BSFS; STL CALK5

IS C3 AN

OUTPUT

NO YES YES

IS A0 AN

OUTPUT

YES

REW A0

NO

JETNK7 ,

IN COMPLEMENT

MODEj I

,ESIRECORDS ON _--_,.J

OUTPUT TAPE_/ J

;o

STL CALK6

STAT7

CONTROL WORD) NOTE
CRAVE ON-LINE

I

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 3 of 51)

3-45

MC 63-4

JE(_ URTB6

READ A RECOkD

FROM B4

Q_

GETOP1
IDENTIFY B4

RECORD

GETOP2
IDENTIFY FIRST

B3 RECORD

l
IS IT JOB

l YES

JOB ALSO ON __

NO

i-

TFRESH RECOR_If

l
OUTPUT J OB

CARD _LINE

UGNOMA

IDENTIFY

B4 RECORD

URTB7
READ ANOTHER

B3 RECORD

I
GET ONE AHEAD

UTHR6

READ ANOTHER

B4RECORD

_ 10 TO LEFT
IS IT JOB INDICATOR

I:° I
READ A RECORD INP

FROM B3 /THERE

_,YESU_E / _, \3 _ OUTPUT CARD; GET)

JOB ON B6 J v k FRESH RECORD /

1H°

/UF--,RM AND OUTPUT) OUTPUT JOB)

JOB CARD J CARD ON-LINE /

UIS I
UFOMCD _ PUT DATE

I - \ iNCARFt :#_ / "-\ FORMDATE/ I DATE / I'"O'C''O''

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 4 o[51)

3-46

MC 63-4

UROUND

ISB6

RECORD

DATE

NO

URNA

IS IM

RECORD

CPL

tYES

J 100 TO LEFT
INDICATORS

UBEGR

MODS ON

B3

YES

GETOP2

IDENTIFY

PREVIOUS

B4 RECORD

IS IT

DATE

NO
UTOO

IS IT

CPL

UCROW

CLEW

DATE

IF ANY

WR2

OUTPUT

CPL

CARD

CPL

ONB4

NO

ANY 40 TO LEFT

PREVIOUS INDICATOR
DATE

YES

USLES

IS THERE

ANOP

CODE

YES
UTHR6

IS IT READ

DATE ANOTHER
B4 RECORD

NO

UMOV I

1

MOVE DATE

TO BUFFER

l

UBEGA UBEGS

UMOV2 _ UTHR7 _

MOVE DATE READ

TO BUFFER ANOTHER

t B3 RECORD

P?M?C?A?. J

No

IS THERE

AN OP

NO

_TEOF _YES

CODE

NO

UWR2

OUTPUT

IT

U FOUL
CLOBR

PRINT

CARD

UERR

MESSAGE

UTHR6

GET FRESH

B4 RECORD

RESET LEFT
INDICATOR

200,000

*P = PULMAK

M = MACRO

C = CHANGE

A = ALTER

UMOX

I

FIGURE 3-.4. COL8ER PROGRAM FLOW CHART (Sheet 5 o[51)

3-47

MC 63-4

UCRE

?
CLEW

OUTPUT DATE,
IF ANY

CPL ON

B4

YES
UPLUME

WR1

OUTPUT
CPL CARD

UPLUMP

UFOMCD /

FORM AND
OUTPUT

CPL CARD

0 -* XR1;
2000 TO LEFT

INDICATORS

UERR
ON-LINE
MESSAGE

MODEON B3

>

*P = PULMAK

G = GROUP
O = ORDER

A = ALTER
C = CHANGE

1 TO RIGHT

INDICATORS

GETOP2 /

IDENTIFY
PREVIOUS

CARD

UNOW

CARD .._

,YES

J INVERT

J INDICATOR

J 2O000

IS IT

RST CARD

CARD J

YES

SET S
DICATO R
ING A OR C

FOLLOWED BY
CARn

UCNA

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 6 of _1)

3-48

MC 63-4

ALTER

OR

CHANGE

NO

(_ OUTPUT
TEMPORARY TEMPS

NO I YES

J IF PREVIOUS CARD I

ALTER OR CHANGE I

INDI CATE NO

MOD INSERTIONS

UIL

PREVENT
MOD TABLE

ENTRIES UNTIL
NEXT ALTER
OR CHANGE

IS IT
SQZ

_ NO

CARD

ACTIVE

' CSQZ

sQUOZE
j \ DECK

RESET LEFT

INDICATOR
1000

__ RESET RIGHT
INDICATOR 6

HAS .__

EOF

OCCURRED

YES

INDICATE NO I

MOD TABLE
ENTRIES

(INSERTIONS)

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 7 o[51)

3-49

MC 63-4

IS iT

MACRO

NO

YES IS IT

,_ GROUP
I

PUT ADDRESS J NO

IN TABLE [U(

YES IS IT

I CHANGE

PUT NO

ADDRESS
IN TABLE

UOROR

YE IS IT

ORDER
/

PUT ALTER J NO
NUMBER rIN TABLE UALT

YES IS IT

ALTER
i

PUT ALTER J NO

NUMBERS iIN TABLE

UMAK

IS IT

PULMAK

NO

©

MACRO

CARD

UMAX

GETLC2

LOCATION

SYMBOL

UALL

UWR2

OUTPUT ISIT

MACRO END

IS TABLE

FULL

YES

INSERT MACRO]

NAME IN

TABLE

IS TABLE

FULL

NO

INSERT NAME

IN TABLE

RESET

INDICATORS

CSANA

UERR
FIRST TIME

PUT MESSAGE
THIS MESSAGE ON LINE

NO

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 8 of 5!)

3-50

MC 63-4

ALTER-CHANGE
TABLE YES

OVERLAP J

NO

GROUP-ORDER

TABLE

OVERLAP

UBACK_ O

URTB7

GET ANOTHER

B7 RECORD

YES

>
t

PREVIOUSRECORD_'_
ALTER OR / NO

CHANGE J

YES

J SEPARATION]

COUNT

TO TABLE

TEMPORARY _NO

YES

SETINDICATOR

IN TABLE

UCKNX

UERRPRINT

-_ ERRORMESSAGE

UERR

PRINT

ERROR

MESSAGE

FIGURE 3.4. COLSER PROGRAM FLOW CHART (Sheet 9 of 51)

3-51

MC 63-4

UWR 1
JTPUT

MACRO, READ
THE NEXT

RECORD

GETOP 1

IDENTIFY

RECORD

ISIT

END

YES

UWR1

MACRO, FOR
THE NEXT

UNO_ UNOB

YE" / REW B3 I

(MOD:7 YE_ _. SEPARATION j

,,, i c°uNTI
luo I
t--

SAVE B3 I
CARD COUNT

uTHR6\
SKIP

FORWARD TO /

NSTRUCTIONS/

I

/ UERR \

(_Ai_D _ SEND_,
_, ACTIVE] \ ERROR /

\ MESSAGE /f

RESET ALL GETOP 1
RIGHT IDENTI FY

INDICATORS PREVIOUS

RECORD

UTHR

IS

SYMBOL

IN TABLE

YES

UTHR6

READ

ANOTHER

B6 RECORD

GETLC1
GET

LOCATION

SYMBOL

GETOPI

I DENTI FY

RECORD

ISIT

END

YES

UTHR6

READ

ANOTHER

B6 RECORD

=®

IS IT

END

NO

ISIT

MACRO

NO

UBA

ANY

ALTERS

READY TO

PROCESS

NO

CDA

CHECK

DONE

COB

SET LEFT]

INDICATOR TO

100 O00

J FORCE CT63A

TO RETURN

TO COA

CBI

ANY

CHANGES

READY TO

PROCESS

NO
NO

CHECK

DONE

<CTE A>ENTER B3

INSERTIONS

THIS CARD

I

CTE3A /

BRING IN

IviOD CARDS

IF ANY

I

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 10 0(5])

3-52

MC 63-4

TEMP MODREADY

CBIRD_ NO

DONE
UPDATING

_ NO
COMUP

UPDATE ALTER

NUMBER

ALTER

OR CHANGE

IN PROCESS

ALTER

READY

NO

CHECK

COMPLETE

UB YES_

/ GETLC1)GETLOCATION

t
CHECK

GROUP

1000 TO LEFT

INDICATOR

RESET LEFT

INDICATOR
44000

I

UFOMCD

FORM

ALTER

CARD

<
<

GET FIRST

ALTER

NUMBER

UDECI

CONVERT

TO BCD

i
UPERT

PUT

IN CARD

IMAGE

l
GET SECOND

ALTER
NUMBER

l

UDECI

CONVERT

TO BCD

i

UPERA

PUTIN

CARD
IMAGE

SEP. CT. _ XR1

3 _ XR2

0 _ CTEPOT

>
>
]
>
>

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 11 of 51)

3-53

uB,(_
C: NE CHECKING Y ES

ANGE TABLEJ

UBC _ NO

f DOES
(SECONDSYM.OL_
_ MATCHj'

YES

UKS

CHECK
HEADING

CHARACTER

UBF

f DOES

FIRST SYMBOL

MATCH

YES

O.STR)CHECK

HEADING

CHARACTER

UBD

/F was_o
SECOND SYMBOL

MATCHEDj'
YES

DROP J

RELATIVE

COUNT

UBE _"

IDENTIFIED J

UC

(ANY _

TEMPS NO

READY

_ YES

,f DIDTEMP_
I MOOREOUEST)NO
. DELETIONJ

YES UU

CHANGE --_,, TO PROCESS

I.o __sALTER NR NO

PAST

ISIT
READY TO

PROCESS

_ .o
DROP

RELATIVE
COUNT

_i

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 12 of 51)

3-54

MC 63-4

NO

INCREASE

ALTER NR

BY I

UY t NO

< UFOMCD >

FO RM

ALTER _'_

CARD

1000 TO LEFT

INDICATOR,
-2 -_ XR2

UGCCD _._

PRINT

CARD
UERR /

PRINT

ERROR

MESSAGE

r

IS THERE A_

SECOND

ADDRESS

NO

ALTER

OR CHANGE

ACTIVE

YES

UDECI

CONVERT

TO BCD

CERT
PUTIN

CARD

IMAGE

1 _ XR2

CFED_ _

CROOM

OUTPUT

ALTER
CARD

CQUIL

HAVE

THERE BEEN

DELETIONS

NO

INCREASE

ALTER NR

BY I

UPERA

PUT IN

CARD

IMAGE

SEPARATION

COUNT _ XR1,
-2 _ XR2

CTEMR

CTEPOT

CFAD

H 0 _ CTEMR

UDECI

CONVERT

TO BCD

UDECI

CONVERT

TO BCD

UPEAT /

PUT IN

CARD

IMAGE

YEs

ADD 1 TO J

SE CON D
ALTER

CFODR-1 I CFODR

\ / ULOK7 \ / / CT'E 1 \

_,-OCATE MODS_OUTPUTMOD'_--..(AL_E';OR
/ ',._/ \ ON"_/ \CARDS/ ',,,.._OEy L,-"

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 13 of 51)

3-55

MC 63-4

u?
C_H_ ANY _ I

LTER OR

NGE STILL] --I

ACTIVEJ I
[2ES

CARD ON
B4

UTPUT CARD,\

EAD FRESH /

4 RECORD /

1
TEMP

MODS IN

PROCESS

I_-°
REVIOUS

CARD

END

I YES

RESET RIGHT

INDICATORS

EXCEPT 1

RESET LEFT

INDICATOR

4000

CSQZ

OUTPUT

SQUOZE

CARDS

SET LEFT I
INDICATOR

4000

ULE

NOT.E_
OL8ER)

RUN J

l NO
t

,sT.ERE-'_.oI
ORE THAN J-_ CALL SOS

':°urPu1"TI

_,:s II PUNCHNEWII
I INPUT I....I

I CARD

YES

RESET

ERROR

RETURN

I

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 14 of 51)

3-56

MC 63-4

UOK

IS IT A

TEMP

NO

U BON

DID

MODS

OVERLAP

YES

CANCAB

PRINT

FI RST

CARD

UGCCD

PRINT

THIS

MOD CARD

UERR

PRINT

ERROR

MESSAGE

SET LEFT

IN DI CATOR

40000

UBING(_

I I-I -_ XR2

CMEN, _

_, / _, SYMBOL / _FOLLOW WITH/
- J _ -_ \ MODS /

I YES I YES _ 1
| CMAN v _,

IS IT YES

J NO

_YES_STHERE_N O

ANOTHER l

l
CTEM } YES

P RI N T SE CON

CARD _ FIELDJ I
I _un

| CFOOD T- "

ERROR
MESSAGE , Nn

!
o P,RST'_YESI SEPARAT,O.I

VERLAP _._,=ICOUNT OF CARDJ

i I

/ UGCCD\
I / PRINT X

I __ CARD /

_OVERLAPPED/

PRINT

_" ERROR

MESSAGE

t

UERR }

SEND

ERROR

COpE

(b

INDICATOR I
TO CTEMR

INDICATOR J B
TO CTEMR FIRST

_ MOD

_ DO _ SET LEFT IMODS INDICATOR

=OVE RLAP J YE 40000

SAVE MOD ILOCATION IN

C AN C AN

J SET LEFT
INDICATOR

J 4000

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 15 o[51)

3-57

MC 63-4

UBRN (_

(o-)MODS NO

OVERLAP

YES

L"-IINDICATOR

4OOO

(_s oWITH ALTER

OR CI-I J_NG E

YES

= %0
CMC t YES

ADJUST B3 TO

GET MODS

CMCA

_T= \
OUTPUT MODS BE-

TWEEN CARD CARDS/

ADJUST SEPARATION

COUNT IN

TABLE

(°_2)IDENTIFY NEW

B3 RECORD

t

ALTER OR

CHANGE J

_YFS

SET INDICATOR

IN TABLE

II SAVE MOD L

_--- LOCATION

IN CANCAN

f is
;-_/ THERE A J

, SECOND FIELDJ

NO

t YES
I

UP DATE I

IACTIVITY

COUNT

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 16 of 5I)

3-58

MC 63-4

CRUN- !_

URO N\
CHECK FOR '_

WRITE RE- /
DUN DANCY /

N_ CRUNK /

SPARE TO

NEXT JOB

I REWIND B4] I

l RESET LEFT J
INDICATOR

2000

UHU
UBBB

CONTROL FORM AND

CARD OUTPUT A

CHANGE IS CRUNK
ERROR CHECK B7 TO BE SPACE TO

COMPL ETE REWOUND N EXT JOB

IS FIRST OUTPUT WAS UFOMCD
ADDR ESS REWIND SOS CONTROL TH ER E A FORM GO

UNDEFINED B7 CARDS GO CARD CARD

UGOOF

PUT IN

PRINT IMAGE

IS SECOND

ADDR ESS

UNDEFINED

YES

UGOOF

PUT IN

PRINT IMAGE

NO

NO

REWOUND

WAS A3
AN

OUTPUT

NO

WRITE EOFAND

REWIND C3

UFOMCD
FORM A

_AUSE CARD

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 17 of 51)

3-59

MC 63-4

UINIT (_
UAIL

UNOK _NUJ

\ /
ECKC=PLET_1----'"k_ _ TO0",GH_7_"_,,CO"VERTTO_D/_/--'k

IJES
UBONS I- I -

--IMAGE DD 9 BLANKS TO

I,%%,,._OUTPUTED ,) _ PRINT IMAGE; /
d '_OUTPUT IF FULL /

JULE _ YES

{-}SSW STATUS TO

PRINT FORMAT

t

/ u-}OUTPUT

SSW STATUS

I FILL IMAGE FOR I

TOTAL ALTER

NUMBERS

JULY

WERECARDS)PUNCHED _CONVERTTOBCD/I .UT,.,..O_
i.o

t
& REDUN. LIGHTS OUTPUT

ON CHAN B IMAGE

t

_ WE.E_"kyE_/ UER. \ _,/ U_RR>CARDS _ OUTPUT LONG _ EJECT

PUNCHED _._ kFINISHED MESSAGE/ _ PAGE

OUT PUT SHORT BLANK CARDS

THROUGH PUNCH
\FINISHED MESSAGE/

i
UGOOF

PUT IN PRINT

IMAGE

UERR

OUTPUT WHOLE

IMAGE

,,>

}

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 18 ot"51)

3-60

MC 63-4

PRESERVE XR4

i
(_ ,SMOD_°.]

1-* XR2

t

COBALT

J RESTORE XR4, 1
INDICATE

SINGLE ADDRE_

Z._'O-_,i-E_T--I
_,, TO COA IF I

ICTE3AENTERED

[FROMCTE3__. •I

GLEADD__O
O SECOND

FIELD) J J

YES t

CACT- 1 -, CACT J

_CTIViTY COUN_J

UBOND_

I RESET LEFT
INDICATOR

1000

CANT _I

INITIALIZE

UERR RETURN
TO ULE

t

UERR
PRINT ERROR

MESSAGE

0-* CTEMR

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 19 o[51)

3-61

MC 63-4

SAVE XRS,
COMPL. OF

ADDR. OF INPUT
BUFFER -_ XR2

1
LOCK+ 17 : HPAGE__

= (PAGE 1)

J STL HAH, I

(SKIP SEARCH

FOR PAGE I ON

FUTURE ENTRIES)

t
Cp _ YES

AGE ON THIS LINE_

_ NO
YE_ *IN COL. 1)

_ NO

'4'_ L(X:ATION FIELD

_,. PRESENT

1
_. ALTER NR.PRESENT

_ YES
R

XR2 -_ HOME, J

STL HDIC, I(AM IN MACRO

LBR OR HEAD)

J

Sheet 48

CONVL

ALTER NR.

PRESENT

YES

CONTD

CONVERT I T

TO BINARY

HCONVL _

ALTER NR- 1
-, UALTN,

WORD 6-* MQ

HBEG

REMARK CARD

NO
SYMBOL PRESENT)

YES

I SYMBOL -_COL. 1-6

I

NO

ALLO I

I BLANKS --,COL. 1 - 6

i

4 -* XR4, 6 -, XR1

l
OP = DEC

HSDEC I YES

HNOOP

,__OP CODE PRESEN_m.

HGOS _ YES

OF OUTPUT

HIM

6 - CHAR OP

I
OP --' COL. 7 - 12, J

12 --, XR4 I

BLANKS-*

WORD 2 OF

OUTPUT

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 20 o[51)

3-62

MC 63-4

DELOP ?

ADJUST VARIABLE J

FIELD TO START

IN COL. 18, MOVE J

O OUTPUT BUFFER I

HRBLK I

BLANKS

WORDS 18, 19, 20
OF OUTPUT IMAGE

HINEO (_

12 -.,XR2 J

IMOVE INPUT

IMAGE TO

OUTPUT IMAGE

1

f _, _ / WAIT FOR _ _ I

k HDIC : 0 _ PREVIOUS INPUT

-- " \ TO COMPLETE / I

(_= MOVE 1ST INPUT

J WORD TOOUTPUT BUFFER

HMAC

LOCN FIELD _

s.Y j _.,LO_._.THANA_sY.Bo,_,
HMACRO _ YES

I WORD 1 --,HLOCT I
MACRO NAME
--, COL. 7 - 12

HBDB _i

HLOCT

I'IMOOP? HROB

OF OP CODE
COL.]3

HHJET _

I MOVE VARIABLE J
FIELDINTO J

SOS FORMAT J
INTO OUTPUT BUF.I

HLBR

CONVERT TO J

CORRECT FORMAT,_

MOVE VARIABLE I
F ELD J

GET WORD 6
OFINPUT

(

HALOP_

14 _ XR4 OP CODE INTO
SOS FORMAT

'
.°(.,o,wo)1

IS OP LBR

_ NO
IS IT HEAD

I "°

YES

HPEN r

_! STL -* HDIC

I'_YMBOL PRESENT_

HBIT

BLANKS_

HLOCT

HOME (_

I RESTORE XR2,

HLOCT_COL.

] - 6 OF OUTPUT

ov,,,u,___. tBUFFER TO HDIC : 0
OUTPUT BUFFER

FOR THIS LBR

YEs"

J RESTORE XRS

!

PROGRAM 3-4. COL8ER PROGRAM FLOW CHART (Sheet 21 o[51)

3-63

MC 63-4

CANCAB

ALTER OR

CHANGE _THIN

OVERLAP

YES

HASFIRST ONE

BEEN PRINTED

NO

UECCD

GET RECORD

UERR

PRINT IT

ONLINE

NOTE THAT FIRST

ONE IN OVERLAP

HAS BEEN PRINTED

CBOX

IS TAPE AT

PROPER POSITION

ALREADY

NO

IS DESIRED

RECORD AHEAD
OF PRESENT

POSITION

NO
CBOXB

CROUN

FOR

FASTER TO

REWIND THAN

BACKSPACE

RECORDS

CBOXC YES

FASTER TO

REWIND THAN

BACKSPACE FILE

CUKY

POSITION TAPE

AT START OF

CURRENT FILE

YES

YES

YES

REWIND TAPE

PAGE 45

CBOXA

PICK UP EXIT

ADDRESS FROM

CALLING SEQ.

COMPUTE NO.

OF RECORDS TO

BACKSPACE

RETURN

I ACT, A "* UFBUF + 2,

[s,1 - 17 uPsuP+s[

FIGURE 3.4. COL8ER PROGRAM FLOW CHAR1 ('Sheet 22 of 51)

3-64

IS CARD BCD _jNO

_ _ YES -

WORD 14 l

-* AC
-* TEST

[_
t-

0_, XR2

IS NEXT CARD BCD YES

RETURN

CHKRB

WORD 28

-* AC
-_TEST

!

CLEW

DATE
OR

UERR

PRINT IT
ONLINE

CNDOM

IT
OFFLINE

RETURN

CLOBRF

CLOE

MC 63-4

CLOBR

GET PAGE
NUMBER

DECI
CONVERT
TO BCD

PUT PAGE
NUMBER IN

PRINT IMAGE

UERR
PRINT CARD

AND PAGE NO.

RETURN

FIGURE 3.4. COLSER PROGRAM FLOW CHART (Sheet 23 o[51)

3-65

MC 63-4

IS OFFENDING)YESCARD ON B3

1_° I .
OUTPUT REC _D OUTPUT RECORD)

FROM B4 FROM B7 /

CLOBRC

SAVE INDICATORS

°

ANY ALTER NR_. O

YES

UPDATE

ALTER NUMBER

BY ONE

CONVERT BCD

TO BINARY

SAVE XR1

Es,_TERN_Y_sL
H NEXT ORDER_ ''_'

ABLE ENT.RY_/

L TABLE ENTRIES/

YES

SET INDICATORS

RESTORE

XR1 AND

INDICATORS

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 24 o[51)

3-66

MC 63-4

IS IT SQUOZE)

NO
uwR,\

WRITE CARD, GET_

NEXT CARD /

I

GETOP1

GET OPERATION

CODE

YES

I
CSQZ

MOVE SQUOZE

CAR DS

CORB

IT END CARD

C,s,Tso z0
1.o

GET NEXT

CARD

t

YES

1
c_o_\PASS OVER]

SQUOZE CARDS/

I

IS THIS PRIOR

TO ALTER NR, i

YES
CORK

NO

CLOBR

PRINT CARD

NO

SIL 2000 I

I_

CORNt-)_ OPDATECOMUPISIT MACRO
ALTER NR

CORKY _ YES

"_ ISIT END

._ YES

RIR 6OOO

>
l

i, 7 ,

UERR

PRINT ERROR

ME_AGE

SHEET 29

GETALL
-'_'-_ CHECK GROUP

k TABLE

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 25 o[51)

3-67

MC 63-4

UPDATE l
COUNT OF

PUNCHED CARDS

i
C IS THIS AFORMER CARD

IZES
CPIN I -

I NPUNCH 1
PUNCH IT

CVIM __

IS IT ASQUOZE CARD

JND

<
CRIB

IS IT ROW
BINARY

CRAB

PUT IN COLUMN

BINARY IMAGE

PUNCH IT

>

CRABC___

CONVERT ONE WORDJ
FROM ROW TO

COLUMN BINARY

CRABB

C WASIT THE ._FIRST WORD

YES

EXECUTE

RESET AND

LOAD CHANNEL

r
BHAVEALLWOROS'_____

EEN CONVERTED_

CRAB_

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 26 o[51)

3-68

MC 63-4

EOF

NO

REDUNDANCY

NO

URDUB_

YES

UMI F A

ON B4

NO

URDUE

URDUH

SET UP TAPE

CONTROL

URDUZ "_

BACKSPACE

AND REREAD

TAPE

)RDER OR

NO

STL 200000

UERR

PRINT ERROR

MESSAGE

REDUNDANCY

YES

9 TIMES

YES

BACKUP

3 TIMES AND

TRY AGAIN

_"succ_SSFO,)YEs

<cL°BRB>IWRITE CARD

°_ \ IPRINT ERROR),--_ 1 STL 20000

SAVE XR4,
1 -_ XR2

<cv M>OUTPUT

UFBUF

uo _

0_XR1,

RESTORE XR4

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 27o[51)

3-69

MC 63-4

LPOSITION
TAPES TO

START OF
NEXT FILE

SAVE ALL XRS I

IS CARD
ALREADY IN
COLUMN BIN

PUNCH _ 1

PUT BCD
INTO CARD

IMAGE

:ONVE T]
IMAGE (RB)

TO COL BIN, I
SET IND
TO BIN

CS

CRASH

RESTORE

XRS

_ NO

YES

ADDRESS

ROW BIN

YES

20 -_LEFT

ON A

NO

CSOZC _ YES

,SNE×T"_e
CARDBCOJI

I RESE_TIYII ' I

I

(IS THIS
A BLANK

CARD

_YES

STL CPLICE i

I

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 28 of 51)

3-70

MC 63-4

INITIALIZE J

IN
COMPLEMENT

MODE

NO

TEMP MOD

YES

SET LEFT
INDICATOR

4000

IS CARDACTIVE

NO

CTEIB <
IS IT CARD

CTEIC

IS IT

MACRO

YES

COMUP

UPDATE UTHR7

ALTER READ NEXT

NR RECORD

IS IT CARD
j -

f YES

UTHR7 /

READ NEXT

RECORD

t

RESET LEFT J

INDICATOR
20000

GETLC1

LOCATION

SYMBOL

GETALL

CHECK
GROUP

TABLE

CTE1D

EOF

YES

RESET LEFT
INDICATOR
200000, SET

RIGHT
INDICATOR 2

NO

IS IT ALTER

OR CHANGE

NO

IS IT GO OR

PULMAK

NO

IS IT GROUP

OR ORDER

NO

IS IT SQZ

YES

IS IT END

YES

RESET RIGHT
INDICATOR

6000

t

GETOP2 / CSQZ

IDENTIFY OUTPUT

RECORD SQUOZE

SET

RIGHT

INDICATOR
20000

READOUTPUT
NEXT

(
TE 14

__J RESTORE

--J LOCATIONS
FILE

ADJUST
TAPE

CONTROLS

CTEABC

ULOK6

RESET B4

TO FORMER

POSITION

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 29 o[51)

3-71

MC 63-4

CTE1G?

GET

ADDRESS

i

INITIALIZE !

IS IT ORDER

YES

NO

THERE A

ALTER NR

YES

CTE1K

IS TABLE

CHECK DONE

YES

FILF

ADJUST /
TAPE

POSITION

CTEll 1l

HAS THE CARD_'_YES

EEN REACHED..,]

/ o.os \
_READ ANOTHER/

\ ..tARO/

1

CTE1H

IS THERE A

FIRST SYMBOL

YES

IS THERE A

SYMBOL

NO

UDOPL

PRINT

CARD

JERR

PRINT ERROR

MESSAGE

IS THIS ONE
IDENTIFIED

NO
FILF

IS THIS ADJUST

ONE IT TAPE
POSITION

UDOP 1

UDOPL
PRINT

CARD

ULOR6

ADJUST

B4 TO GET
RECORD

CTE1M ,_

_'/STHE ALTER _D,_RE WE DONE

_,,NR. TOO HIGH

CTEIL _

CORD

OUTPUT

FINAL CARD

-6
_p UERR /

RINT ERROR

MESSAGE

I
CORD

OUTPUT
CARD

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 30 of 51)

3-72

MC 63-4

CTE1T

J REWIND B4 I
INITIALIZE

l
READ A

RECORD

DOES

FILE NUMBER

MATCH

YES

GET ONE RE-

CORD AHEAD

t_
t-

<CORDS>READ A

B6 CARD

t
_OU SHOULD

TPUT BEGIN _

YES

cASTHEREA YES
OND SYMBOLj/

NO
fWAS COUNT

\TOOLOW J ,_,
tuo
t-

CORD /

OUTPUT

A CARD

t

FILF

._/ ADJUST
TAPE

\CONTROLS

1
D JUST TO

RECORD

CTEIN

HAVE ALL :

BEEN CHECKED

DOES SYMBOL

MATCH

YES

DOES HEAD

CHAR. MATCH

YES

PUT CORRECT

ALTER NR. IN

UALTN, GET
SEP. COUNT

FILF

ADJUST

TAP E

CONTROLS

GETLG6

GET LOCATION

SYMBOL

NO

MATCH

YES CTE1S'

CORDS

READ A

CARD FROM

B4

GET

SEPARATION

COUNT

AS ECT
RECORD BEEN

REACHED

YES

PUTIN
HEAD

CHARACTER

NO

IS IT A 6 -

CHAR. SYMBOL

DOES HEADING

YE: CHAR. MATCH

CORDS

READ RECORD

J FROM B4CTEIV

/ CORD \
_, _ WRITEOUT

/_OES SYMBOL 1_%_NO I _ARD, GET LOC./ I

TCHSYMBOL2j _ \ SYMBOL _,,]

YES _OESSYMBOLI_...,

(_ _ k MATCHj IDDR;:ADDR__ YESt /

_HAR.SYMBO_l I
I YES I I
I (--DOESHEAD
/ _CHAR._TC.J

.t jYES
R I - CAMPU_) . , .

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 31 of $1)

3-73

MC 63-4

BACKSPACE CHAN. B

TAPE 1 RECORD,
THEN 1 FILE.

SKIP TAPE FORWARD 1

RECORD AND DELAY

(EOF

_ NO
BACKSPACE

TAPE 1

RECORD

TURN OFF I
CHAN. B

REDUN IND.

URDUN\
AIT UNTIL PREVIOUS)
UTPUT IS COMPLETE/

AND C_IR RECT !

(SOS CONTROL cARD) YES

_.o

MACRO OR INA) YESMACRO SKELETON

NO

ALTER NR WITHCARD (RT INO 5)

YES

UPDATE
ALTER NR

COUNT BY 1

NO

I
CVIP

IN OVERLAPPINGMOD AREA)
NO

UNCORRECTEDREAD REOUN

NO

cvAMOUTPUT

CARD

YES

YES

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 32 of 51)

3-74

MC 63-4

,sT.,SA _OUTPUTS= CON_CO"TROLCARDj r _ _ssw_2uPI ,J
/

I
CVOM t_NO

YES

INITIALIZE I/0 J
COMMAND FOR

BCD OR BIN

INITIALIZE I/0

WRITE COMMAND
FOR BCD

IS CARD ATEMP MOD

NO

CTEMT

EQ PUNCH TEMPS_,,
(SSW#6) J

(
CTEW i_NO

UPDATE COUNT

OF OUTPUTTED

CARDS

CHAN C AVAIL _ REQ (sswDUP#1)TOC

REQ PUNCH(Ssw #5)

(_ES

NO

CVIM

J_ UPDATE COUNT

OUTPUT OF OUTPUTTED
ONTO A0 CARDS

CPUN /

PUNCHCARD

(CB OR RBAS REQ)

OUTPUT

ONTO C3

SHOULD CARD CONVERT
CHAN A AVAIL BE BINARY TO BINARY

Lt
I.o -, I_- BE PRINTED OUTPUT

ONTO A3

YES

UERR
PRINT IT IS IT BCD

t= INO

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 33 of 51)

3-75

MC 63-4

GETAD+_

CLEAR BUFFER

If#ORE

GET NEXT

COLUMN

IS IT BLANK

1H°
HOUSE O

IS IT BEYOND_ IS IT ALTERCOL. 16 OR ORDER

rYES

NO
IS IT HEAD

YES

YES
15

NO

BLU CLOBRB

PRINT CARD

UERR

PRINT ERROR

MESSAGE

HHUNT /

GET A

FIELD

RIR 36 I

HGETEM

IS IT A+

NO

HHUNT

GET FIRST

FIELD

HGCOM I(_

HOPTOD\
CHECK AND

CONVERT /
ADDRESS /

J STORE IT

t

HUNT /
GET NEXT

FIELD

HSTDI (_

LEFT
ADJUST

J STORE IT

HNE

HUNT

GET NEXT

FIELD

HADD ?

_ HOPTOP /

CHECK AND

CONVERT

ADDRESS

STOREIT

$

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 34 of 51)

3-76

MC 63-4

HADD2 (_

LEFT

ADJUST

l

i i

HFIRT

LEFT

ADJUST

t
STORE IT

NuHT}GET NEXT

FIELD

;;$$

H_Lq)

HDWDY /

LEFT

ADJUST

t

I STORE IT

l

< MuHT}GET NEXT

FIELD

NAB(_
CHECK FOR

LEGAL ADDRESS

t
CONVERT

TO BINARY

t
STORE IT

NBO

,-,,-EsTM\TEST FOR

LEGAL ADDRESS/

i
CONVERT

TO BINARY

t
STORE IT

t

HUNT }

GET NEXT
FIELD

HERR

< PRINT

RECORD

t
PRINT ERROR

MESSAGE

$

IS IT
ORDER OR

GROUP

HRDM _ NO

HIMY

NOTE THAT
3RD ADDRESS

NOT EXAMINED

_ J PUT 3RD

ADDRESS IN

TABLES

_ !

HADL

c ,-,o,=-,-oo\
CHECK AND }'

ONVERT ADDRESS/

t

I STORE IT I

cb

HALL (_

< }LEFT

ADJUST

l
STORE IT

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 35 of S1)

3-77

MC 63-4

HAMY

HOWDY

LEFT
ADJUST

J STORE IT

NOTE THAT
3RD ADDRESS

NOT EXAMINED

HPL5

IS ADDRESS 0 _

lNO

/ H°'DY >
LEFT

ADJUST

!

I_

HDDLI 7

LEFT
ADJUST

STORE IT

/ .u.T \

<.o.T>

H EMY ?

NOTE THAT
3RD ADDRESS

OT EXAMINED

HEINI (_

HTESTM >
CHECK FOR

VALID NUMBER

CONVERT
TO BINARY

t
STORE IT

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 36 of 51)

3-78

MC 63-4

J AC_ CARMEN,
SAVE ALL XRS,
UGRUPC-_ XR1

L

UFEA t-

- XR1 0

I RESTORE XRS

UFEB _

',.=_ AC : NEXT

j --kUTABLENTRYJI
XRI+ 2-_ XR1

UKSN / I

GET HEAD

CHARACTER

UFEB

UPDATE NEXT

UTABL ENTRY

l
GETSY J

MOVE OUT JBLANK

CARMEN -_ AC

INITIALIZE

XR2 FOR

B4 RECORD

SYMBOL y

IYES

GRTSC 1I

/ oo,oP\GET A ,_

CHARACTER ,/

IT A BLANK)

_ NO

I LEFT ADJUST
SYMBOL

INITIALIZE

XR2 FOR
B3 RECORD

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 37 of 51)

3-79

MC 63-4

HWORKS
GET COLUMN

1

HNDAS HOK

IS IT AN

ASTERISK

YES

HWORK

GET

COLUMN 7

ISIT BLANK

NO

HWORK

GET

COLUMN 8

HRET

COLS" 8 - 12) YESBLANK

i iSIR 100000

ERROR

YES ISIT SOS

_ONTROL

NO

IS IT BLANK

YES

CLOBRB

PRINT
CARD

UERR

PRINT ERROR/

MESSAGE /

I d

HHH

NO'Is IT IN TABLE)

YES

t PUT CODE IN I
INDICATOR

HH2 r

GET NEXT

CHARACTER

IS IT BLANK

YES(6 - CHARS. _-

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 38 o[51)

3-80

MC 63-4

I INITIALIZE I

XR2 FOR
B4 RECORD

GET DPN

CODE

IS IT ENDTAP

/

RIG I Y
ES

UPDATE
TAPE CONTROLS

IS IT HEAD

YES

GE T

ADDRESS

MODIFIED

H EAD CHAR.
-_ UHEAD

URT

INITIALIZE

XR2 FOR
B3 RECORD

GETOP /

GET DPN

CODE

t
SIT A GO CARD_ "_-"

_YES

SIL 200 I

CJINX F

COMPLEMENT

MODE

YES

URT

,s ACT,VE 'SBLANK,_CO"X__CARD 72 = TEMP J

YES

P IN COL 72)

NO
I

SIL 1000 J

I

I SIL 1000

YES

y_

\

'_ T IN COL 72

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 39 o[51)

3-81

MC 63-4

J INITIALIZE

FOR 6 CHARACTERS

(-6-* XR2)

FIELD - SEPARATING

CLOBRB

PRINT
CARD

t

CLOBRB /
PRINT

CARD

l

_ UERR\NOT:3RD ADDRESS

NOT EXAMINED /

NTEST\CHECK ADDRESS

FOR LEGALITYJ

!

\ To.I_R,/

UERR

PRINT ERROR

MESSAGE

FIGURE 3-4. COLSER PROGRAM FLOW CHART (Meet 40 of 51)

3-82

MC 63-4

LEFT - JUSTIFY

THE SYMBOL

SELECT

THE PUNCH

H8DG '

SELECT

THE PRINTER

GET CALLING

SEQUENCE
PARAMETERS

HHF I _

I FILL UP TO

12 WORDS OF

IMAGE

HHB

MCRE THAN 12WORDS

.ov _

J GIVE 1/0
COMMAND

H25P2

HHE

GIVE 1/0 COM'D

WRITE PRINTER,

SHIFT LINE RT

I
EJECT PAGE

PAGE 8

S IT A NUMBER_-_- O

RESET HWORKS

TO PASS THROUGH

ADDRESS AGAIN

I
PRINT

CARD

1
PRINT ERROR

MESSAGE

I
•,-_IS IT ALTER)

_ YES

I

SIR 2 FOR J

ICHANGE

I J
-!

--_IS IT ORDER)

YES

I SlR20FOR IGROUP

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 41 of 51)

3-83

MC 63-4

IT A NUMBER'_

<

RIR 36 J

CLO6RB >

PRINT
CARD

t

UERR /

PRINT
MESSAGE

INITIALIZE FOR
NEXT CHAR.

t '

SAVE REST,

RESTORE XRS

DO ANY MODS
FOLLOW

NO

PRINT

CARD

PRINT ERROR

MESSAGE

FIGURE 3-4. COL8ER PROGRAM FLOWCHART (Sheet 42 o[51)

3-84

MC 63-4

SAVE XR4,
14 -'* XR1

l

<jsEHsA ,>INITIALIZE

AC

JSENSC7

_NEXT SSW UP

f

STORE AC

JSENSD _

-_ UPDATE TOTEXT NEXT SSW

MESSY -_ AC

J AC _, NEXT
MESSA

LOCATION

MESSY + 1 -* AC

I SAVE ALL XRS, I
ICOMPT-I_ COMPTJ
ITURN OFF CHAN B I
J REDUNIND J

SAVE XR4,
INITIALIZE

CALL SEQ
TO CL CBR

_ c,oBR\
RINT RECORD _

AND POSIT /

RESTORE XR4 J

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 43 of 51)

3-85

MC 63-4

CLEAR AC, J

PUT A SHIFT 1 BCD FORM A CARD
CHARACTER CHARACTER

IMAGE FROM MQ TO AC

UFIB _ YES _._

_ OOR,PENTEREO-NYEtfANYCHARACTER_F_OMO_'_ LEF' J
NO

(_ IS IMAGE)ALMOST FULL

UFIG _ YES

I FILL BALANCE I
OF IMAGE

WITH BLANKS

l

UERRPRINT IT

JPUF

t
OULD IT BE OUTPUT_

YES

>

CREW /
OUT RJTIT

l ADD3 BLANKS] H_

SAVE XRS

FIGURE 3-4. COL8ER PROGRAM FLOWCHART (Sheet 44 o[51)

3-86

MC 63-4

INITIALIZE TO

GET ALTER OR

CHANGE CARD

SET RETURN J

FROM ULOKT

SO CAN ENTER

AT ULOKA

ULDKA
ULDK7

POSITION B3 /

t
PUT CARD

NUMBER IN

PRINT IMAGE

USCC_

USWCH

HAS ERROR MSG

BEEN SENT

YES

UPUFL

FIRST ERROR

THE MESSAGE

UPUF

UDROP

GET HEADING

CHARACTER

UERR

PRINT ERROR

MESSAGE

INITIALIZE

!

ANY

CHARACTER

NO

UDRIP

PUT IN

IMAGE

UPPIF

I S IT ALL ZERO

YES

NO

UMIT

UDRIP

PUT A CHARACTEI

IN IMAGE

UDROP

GET A

CHARACTER

IS IT ZERO

PUT HEAD

CHARACTER

IN MQ

PUT HEAD

CHARACTER

IN MQ

GET $ SIGN

UDRIP

PUT IN

IMAGE

NO_ DOES HEAD
__HAR MATCH)

YES

BLOCK FURTHER J

CHECKING J

1

UKSY

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 45 o[51)

3-87

MC 63-4

J LOCATIONTO AC

CBOX _J
VARIABLE

E_IT

REDUNDANCY ,.

l
CHECK FOR

INPUT

REDUNDANCY

F
UBET

DROP COUNT,
SIMULATE

TSX URTB 6,
TRA CR6 + I

EXT TO LAST CARD_ NO

ULOKD _ YES

GET LAST

CARD

BACK UP

TAPE

J r_

J LOCATIONTO AC

ULOKA

CBOX

VARI_LE

EXIT

L
ULOKE |-

CHECK FOR
OUTPUT

REDUNDANCY

CHECK FOR

INPUT

REDUNDANCY

T_
y-

/ UBET)

DROP COUNT,
SIMULATE

TSX URTB7
TRA CR7+ 1

1
EXT TO LAST CA_

ULOKE _ YES

GET LAST

_RD

I

NO

BACK UP

TAPE

FIGURE 3 -4. COL8ER PROGRAM FLOW CHART (Sheet 46 o[51)

3-88

MC 63-4

URTC _ XR2

UWAIT

DELAY UNTIL

CHANNE LS FREE

SELECT
PROPER INPUT

BUFFER

MOVE 14 WORD

BUFFER TO
UFBUF

URTC1 -* XR2 < UPUSH /

INSERT COMMA
IN IMAGE

UPERY

SET FOR
MAXIMUM OF

6 PASSES

1_
UPE RS I--

GET ONE

CHARiCTER

PUT IT
IN IMXGE

UPE RD_

INITIALIZE

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 47o[51)

3-89

MC 63-4

MOVE ONE J

"HARACTER INTOJ

ADDRESS OF J

CARD IMAGE J

URTDI(_

_I _SOS LISTING _ YE S

INITIALIZE

XR2 WITH

I NEXT BUFFER

l

I iBUFFER

--, XR4

i

_9(_PARED*,T_
L BUFFERS,,/

IjES
UROUK _--

RESTORE XR4,

XR2-* CR EAD,
XR2 --. CRAVE

J READ TAPE, ADJ J

CROUN \ IBUFFER CONTROLI
CHECK FOR _ _, =

REDUNDANCY/

ONIiPUT ,(SOS LISTING &
BEYOND CONTROL

CAI DS

fHAS END CARD_ YES ' NO

\ BEEN READer

URTC _NO

J BUFFER ADDRES_
CONTROL -, XR4I ,--"

t u_'fu_
(F'RTHSTo_tE _

URTD pO

(SE_DT,ME'_.THROUGH

YES

_,_S LISTING_

Y ES

J SIL 1

YES l
_ ,_V,L\

CONVE RT TO]

YMBOLIC CARD/

I

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 48 of 51)

3-90

!' MC 63-4

()
r

DELAY UNTIL

AANDC

CHANNELS

ARE FREE

I

N(_3 URDUD

\.:_._u_/

CARD & UPDATE J _'_ ON A ALSO ,,,,,/

CONTROLS J _YES

NOTE "C3

FA'w_;_2°*
A3 ALONE"

3

URDUC

-I
"STORE

CHANNEL"

_ u.ou_\
ENT. OUTPUT)

UFF.(1OFTy

1

J UPDATE NO. OF

TIMES THROUGH

UROUC

URDUI _

(>_TIMES _

URDUM(_

I DISCONNECT J
TAPE

_T_UTT,NGO__%_
HERCHANNEy

YES'

D iOT H E R C H A N Y"'..._

SCONNECTEDj/

NO
NOTE"A3_A,LUREI

NOW WRITING |

C3ALONE" J

PRINT MSG

"WRITE

FAILURES"

BACKSPACE

1 RECORD

I WRITE AGAIN 1AND DELAY

FIGURE 3-4. COL8ER PROGRAM FLOW CHART (Sheet 49 o[51)

3-91

MC 63-4

_ URDUN\
CHECK FOR _,

EDUN DAN CY/

_ _ou_\
CHECK FOR]

EDUN. ON INPU7

1

HAS EOF _S

BEEN READ

_NO

BUFFER ADDR.
CONTROL -* XR4

1

<Ki>SET SWITCH

%_coo_

EAD TAPE, ADJ.

UFF. CONTROL,

LEAR BINARY

IND, UPDATE

SEP. COUNT

URT_

SAVE XR4AND
CHANNEL A

STATUS

lS DESIRED _'_ v=
FFER ACTIVE _-.:._.

ON CHAN A

_NO
EXAMINE

CHAN C

STATUS

1
NO//rlS DESIRED _'_

"_ BUFFER ACTIVE)
_ON CHAN C J"

_YES
UWAITS t

l

DELAY UNTIL

CHANNEL

FRiE_

HATE - I

YE: SOS

CARD

NO

MODE

YES

IS INCLUSION

ACTIVE

NO

MACROS TO

BE OUTPUTTED

YES

<
NO

BUFFER ADDR. iCONTROL -* XR2

i

CVODM /
OUTPUT

(5
IS IT MACRO

YES

COMPLEMENT

MODE

YES

IS DELETION

ACTIVE

NO

CHOKE

RESTORE XR4

FIGURE 3-4.

BUFFER ADDR.

CONTROL_ XR2

CVDOM /OUTPUT

COL8 ER PROGRAM FLOW CHART (Sheet 50 of 51)

3-92

MC 63-4

LATED BUFF. _----_ _t:lut_r_

_TEREy _ L

ONE ,

YES

.,s _YEsl Lo,o
LATED BUFF. _ MQ FROM

. EN_REyI BUFFER

ENTE R KEYS

UPDATE
RERUN BY

TWO

WE IN YES

REQUESTED
FILE

DOES

REQUESTED

FILE EXIST

YES
FILFB

I SET TAPE

CONTROL FOR

REQUIRED TAPE

FILFY _

ITIONED TO

RRECT FI_

RTDBI

I ,os,.,-,o,.,To/
START OF FILE & J

RESET COUNTERS J

FILF_

CLOBR, 4

PRINT ERROR
IP OR ORDEI

TSX UERR, 4

PRINT ERROR

AESSAGE

FIGURE 3.4. COL8ER PROGRAM FLOW CHART (Sheet 51 of $1)

3-93

MC 63-4

3.5 CORE MAPPING PROGRAM (CORMAP)

CORMAP records on A2 selected lines from an SOS listing. These lines
contain ORG, TC, END, HEAD, JOB, USE, REFR or 6-character location

fields. The last preceding line with a location field is given for ORG, TCD, or
END. The following line is given with USE, REFR, or LBR.

3.5.1 Input Requirements

The BCD listing tape of the program to be examined must be placed on B6
(if it is on two reels, the second goes on B7).

3.5.2 Output Requirements

The information goes out on A2

3.5.3 Method

The tape is searched for the desired items. They are put on A2 with the
decimal equivalent of the locations included. A list of section lengths beginning
with 6-letter symbols is given at the end.

3.5.4

a)

b)

c)

d)

e)

f)

Usage

Ready input BCD listing tape on B6 (and B7 if there are two tapes).

Put SOS on A1.

Place blank tapes on A2, B1, and B2.

Place CORMAP on A3 or in card reader (sense switch 1 down if in card

reader).

Clear and load SOS.

CORMAP halts at 5671. For additional runs, press START.

3-95

MC 63-4

3.6 PRIORITY INDICATOR LISTING PROGRAM(MXNDKT)

MXNDKT prepares a listing of the use of "in process," "ready," and sup-
pression indicators for the Mercury compilations. It can also list all references
to 6-letter symbols.

3.6.1 Input Requirements

The symbolic tape of the program to be examined must be placed on B6.

3.6.2 Output Requirements

The indicator listing is read out onA2, and the operational 6-letter refer-
ences are read out onA6.

3.6.3 Method

Every use of TRNON, TRNOF, QUEUE, and UNQUE, or their expansion
along with the alter number, is placed on A2. At the end, a cross reference is
made of these uses. If senseswitch 6 is down, each reference to a 6-letter
symbol, along with its alter number, is placed on A6.

3.6.4

a)

b)

c)

d)

e)

f)

Usage

Ready input symbolic tape on B6.

Place SOS on A1.

Ready blanks on A2, B1, B2, and A6 (if sense switch 6 is down).

Place MXNDKT on A3 or in the card reader (sense switch 1 down).

Clear and load SOS {sense switch 6 down if 6-letter references desired).

Program halts at 5670. To make extra passes, use additional GO
cards and press START.

3-97

MC 63-4

3.7 CHECKSUMCORRECTIONPROGRAM(SQZSUM)

SQZSUMis a 5-card program which reproduces column-binary squoze
cards with the checksum corrected.

3.7.1 Input Requirements

Column binary squozecards suspectedof having erroneous checksums
serve as input to the SQZSUMprogram.

3.7.2 Output Requirements

This program puncheson-line new squozecards, identical to the input
cards except for corrected checksums.

3.7.3 Method

The input squozecards contain 12-bit "folded checksums" in column 3
which represent the logical sum of the bits in all data words on the card except
the checksum itself. SQZSUMcomputes the checksum {which cannot equal zero)
of each input card, even if the card itself is in error rather than its checksum,
and reproduces the input card exactly, except that the checksum computed by
SQZSUMreplaces the previous checksum.

3.7.4

a)

b)

Usage

Operator Procedure:

1) Load and ready the on-line card reader with the SQZSUM deck fol-
lowed immediately by the suspect column-binary squoze cards to
be reproduced.

2) Load and ready the on-line card punch.

3) Press LOAD CARDS.

4) Not necessary to clear memory. No sense switches or console
keys are tested or used. No tapes are required. The status of
all tapes is unchanged.

Stops--1038 is the correct stop (HTR 1) upon completion. Additional

cards may be introduced at this time. There are no other stops.

3-99

MC 63-4

c)

d)

If a card in other than column binary squoze format is introduced, it

is repunched without change, except for column 3.

SQZSUM is a 5-card self-loading absolute row-binary deck, which

loads into lower memory (using locations 0-1758). It was assembled
using SE9AP.

3-100

MC 63-4

3.8 TAPE-KEY COMPARISONPROGRAM{KEYS)

KEYS examines a program listing tape and prints out each instruction
having a direct address equal to the location entered in the console (MQ-entry)
keys. Optionally, KEYS prints out each instruction having a direct address
equal to any of up to 23 locations punchedin a data card.

3.8.1 Input Requirements

The BCD listing tape of the program to be examined must be placed on B4
and must contain an end-of-file mark after the listing. If the EOF is missing,
KEYS will examine the entire tape.

The location to be searched for is entered into the console keys in octal-
equivalent BCD, e.g., location 00374is entered as 000 000 030 704. If a data
card is used, it should be placed immediately following the KEYS deck in the
on-line card reader with the locations to be searched for punched, right-justified
in octal-equivalent BCD, in successive words starting with the 9L word.

3.8.2 Output Requirements

Each instruction in the B4 listing with a direct address equal to the loca-
tion entered in the keys or a location punchedin the data card is written on the
output tape, A2, in BCD. If the address field of a constant or of an immediately
addressable instruction (such as AXT) is equal to a location being searched for,
these constants and instructions are also written on the output tape.

No attempt is madeto compensatefor references to thedesiredlocation(s)
via indexing or indirect addressing.

The JOB and ENDcards are also printed for purposes of associating the
printout with the particular listing tape.

Persistently redundant records are printed out with the word REDNCYin-
serted at the right.

3°8.3 Method

KEYS reads in one record at a time from B4 and compares the address
field with the location specified either by the setting of the entry keys or punched
in the data card. If they compare, the record is written on A2 and a counter is
updated. KEYS continues to read individual records and compare their address
fields until an end-of-file is reached; whereuponKEYS prints out the count of its
findings, rewinds the input tape, andhalts. At this time, a new data card or

3-101

MC 63-4

key setting may be entered, sense switch 1 reset, and START pressed to initi-
ate another pass. After a pass using a data card, the keys may not be used to
enter data for future passes.

An examination of location 00000 may be made with a zero entry in the keys.
If a data card is used and location zero is one of the locations being searched
for, the 9L word of the data card must be zero.

3.8.4 Usage

a) Ready

b) Ready

c) Enter

press

d) Ready
lowed
for on

e) Press

f) KEYS is a 9-card absolute row-binary deck assembled by SOS.
quires a 2-card loader.

input BCD listing tape on B4.

blank tape for output on A2.

location in console keys in octal-equivalent BCD. Optionally de-
SSW 1 and place the data card behind the KEYS deck.

the on-line card reader with the KEYS deck (and loader), fol-
by the data card(s) if more than one location is to be searched
one pass.

LOAD CARDS.

It re-

Final stop, at 56738, is an HPR. If finished, write an end-of-file on

A2, press CLEAR, and print A2 under "single space." To initiate
another pass, (1) reset SSW 1, (2) enter new control card or reset
keys, and (3) press START.

3-102

MC 63-4

3.9 LOW COREREFERENCE PROGRAM(LOWCOR)

LOWCORexamines a program listing and records each instruction with a
direct address less than 0040.

The flow chart for the LOWCORprogram is shownin Figure 3-5.

3.9.1 Input Requirements

The program to be examined shouldbe listed (using LS, PS or CPL) on
tape which becomesinput to LOWCORon B4. An end-of-file must be written on
the listing or LOWCORdoes not terminate until encountering an end-of-tape
mark on B4. The program reads in andtests one record at a time.

3.9.2 Output Requirements

The selected records from the examined program are written on tape B5
for off-line printing. The program writes an end-of-file on B5 and rewinds B5
prior to returning to SOSMonitor. Constants, immediately addressed instruc-
tions (such as AXT and ALS), instructions with effective addresses which re-
suit from using the XEC instruction, indirectly addressed instructions, andthe
various pseudo-instructions (such as ORG, BSS, EQU, END) are written on B5
if their direct addresses are less than 0040. The JOB card and the pagenumbers
from the input tape are reproduced on the output tape.

3.9.3 Method

The method of operation for LOWCORis illustrated in Figure 3-5.

3.9.4

a)

b)

c)

Usage

Time Required--LOWCOR requires, in addition to the time needed for

rewinding tapes B4 and B5 at the beginning and end of the program, ap-
proximately 5N milliseconds, where N is the number of records in the

program listing being examined.

Storage Required--80 core storage locations (116108 - 117278).

Checkout--LOWCOR was used to check all sections of the SOS system
and was hand-checked by comparing it with the listings of sections DA
and M1.

3-103

MC 63-4

REWIND I

LISTING AND

OUTPUT

TAPES

t

PRINT NAME]

OF PROGRAM

(LOWCORE)
ON OUTPUT

TAPE

CLEAR INPUT J

STORAGE

AREA

t

NEXT RECORD

FROM LISTING

TAPE

!

IS RECORD

A "JOB"

CARD

_ NO

IS RECORD

A PAGE

NUMBER

| NO

IS THE

ADDRESS

(4TH WORD)

BLANK

YES

t

IS ADDRESS 1

NO LESS THAN

01008

t YES

00378 /

t NO

()NO (3RD WORD)

BLANK

YES _._

I PRINT RECORDDISCARD RECORD]

, YES

YES

END-OF- 1

FILE

READ

YES

WRITE EOF I

AND REWIND

OUTPUT TAPE

FIGURE 3-5. LOWCOR PROGRAM FLOW CHART

3-104

MC 63-4

3. i0 SQUOZE DECK COMPARISON PROGRAM (COMPAR)

COMPAR compares corresponding records from two program listings and
records the locations of those which are not identical. One record at a time is

read in from each listing tape and compared.

3.10.1 Input Requirements

The programs to be compared are listed (using LS, PS, or CPL) on tapes
which then become the input tapes B3 and C2 for the main program. An end-of-
file must follow both listings or COMPAR does not terminate until encountering
an end-of-tape mark on B3 or C2.

3.10.2 Output Requirements

The locations of corresponding instructions which are not identical are
read out on tape A2 for off-line printing.

3.10.3 Method

COMPAR reads in one record each from B3 and C2. If the instruction por-
tions of the two records are not identical, the location of the record is written
on the out tape. When an end-of-file is read from either input tape, both input
tapes are rewound and the program stops. Commentary, pseudo-instructions,

BCI variable fields, and other nonexecutable information, which may have been
spaced or punctuated differently in the two program versions without affecting
their execution, are ignored.

3.10.4

a)

b)

c)

Usage

Time Required--the time required for COMPAR (IBM 709) is 6 + 3N
+ D + S milliseconds, where N is the number of records in the shorter
of the two programs being compared; D is the number of times the er-

ror routine, upon encountering unlike corresponding records, has to
be employed; and S is the number of times the search routine has to be
employed to realign the tapes.

Storage Required--468 cells.

Operator Procedures:

1) COMPAR is a squoze deck executed under SOS control.
tapes A1 (SOS), A2, B1, and B2 (blanks) are required.

Therefore,
The

3-105

MC 63-4

d)

COMPAR deck should be readied in the on-line card reader and

sense switch 1 depressed.

2) During execution, upon an HPR after an on-line message, the tape
numbers of B3 and C2 should be entered in the keys and sense

switches. The right three digits of B3 should be entered in BCD
in the decrement of the keys and of C2 in the address. The fourth
(high order) digit is entered in the sense switches. For example,
B3 = H1579, C2 = H81 would be entered as:

keys: 050711001001. sense switches: 001000.

3} Operate as a normal SOS job.

Restriction--information not available on a listing tape, such as pro-

grammer macro expansions, LBR cards, or expansion of other gen-
erative pseudo-instructions, cannot be compared for correctness.

3-106

MC 63-4

3.11 SYMBOLIC COREDUMP PROGRAM(MXCORE)

MXCOREis a self-loading program which causes a symbolic rescue dump
of core after an SOSprogram hasdestroyed the SOSMonitor. MXCOREdumps
core memory, exclusive of SOSMonitor, onto B2 in the SOSformat and re-
stores SOSwhile producing the output tape for printing on A2.

The flow chart for MXCOREis shownin Figure 3-6.

3.11.1 Input Requirements

MXCORE, as a salvage measure following a program mishap, requires
that the SOStape setup be untouched--notapes may be moved. The RESET
button shouldnot beused and the CLEAR button must not be used. Sense
switch 4 must be downto indicate a rescue operation to SOS. The computer
must be inhibited or disabled while MXCOREis being loaded.

3.11.2 Output Requirements

MXCOREdumps the panel andall of core storage abovethe decimal loca-
tion 3000(the 3000lower core locations are reserved for SOScontrol programs)
onto B2 (see B2 format under subsection3.11.4). SOSreceives control andpro-
duces an output tape on A2 for printing.

3.11.3 Method

The method of operation for MXCOREis illustrated in Figure 3-6.

3.11.4

a)

b)

Usage

Operator Procedures:

1)

2)

3)

4)

Set sense switch 4 down

Ready card reader

Load MXCORE program

Final p_-ogram stop is at 1788 (the standard SOS stop), with A2

containing the program dump for off-line printing.

Format of B2 for SOS Rescue Dump--the execution of a CORE or

PANEL macro causes the specified information to be written on B2 as

3-107

MC 63-4

one or more physical records. Certain additional 1-word records are
also written on B2 to serve as flags. The B2 for an SOSoutput dump
has the following format:

Location of Length of Description of
Record on B2 Record Record

Flag signaling beginning of "snaps"First

Second

Third

Fourth

Fifth

JOneword

Nine words

Three words

Less than
256words

Three words

PANEL macro output: AC, MQ, SI,
XR1, XR2, XR4, ENK-keys, sense in-
dicators, sense switches, AC overflow,
divide check, and I/O check

COREmacro flag

Consecutive core storage locations,
255 or less

Record defines six or more consecutive

identical storage words

(The fourth rec.ord is repeated as many times as necessary to com-
plete the limits of the CORE macro. The fifth record is repeated

when six or more core storage locations have identical contents.)

Last Record One word Flag signaling end of "snaps"

3-108

MC 63-4

SET $54
DOWN.

INHIBIT OR
DISABLE

COMPUTER

J SAVE AC
AND XRI

I DISABLE THE

COMPUTER
FROM ANY
TRAPPING

DEACTIVATE
DATA

COMMUNICATIONS
CHANNEL

TURN OFF
CHANNEL A&B
REDUNDANCY

AND
END-OF-FILE
INDICATORS

WRITE
BEGINNING OF

DUMP FLAG
AND PANEL

ON B2

INITIALIZATION
STARTS DUMP
AT LOC (3000)

WRITE
CORE FLAG

ON B2

DUMP CORE
MEMORY ON

B2 AS 242
WORD RECORDS.

SIX OR MORE
CONSECUTIVE

WORDS RESULT
IN COMMENTARY

RECORD

WHEN ALL
OF CORE
THROUGH

LOC (32,767)
DUMPED ON

B2, WRITE
END OF CORE

FLAG

INITIATE
LOAD TAPE

SEQUENCE TO
LOAD SOS AI

TO WRITE
FINAL OUTPUT

TAPE A2

FIGURE 3-6. MXCORE PROGRAM FLOW CHART

3-109

MC 63-4

3.12 SQUOZE TAPE MODIFICATION LIMITS PROGRAM (SUMARY)

SUMARY analyzes the squoze tape (or preface card of a squoze deck)of any
SOS-assembled program and estimates the allowable number of modifications
to that program for an SOS execution run. Also, if a squoze tape is used for
input, SUMARY shows the "separation count"--the maximum such count for a
successful recompilation is 32767.

The flow chart for SUMARY is shown in Figure 3-7.

3.12.1 Input Requirements

The fixed constant, currently 17004, for the particular SOS revision must
follow the SUMARY program deck. The constant (in binary) must be in the ad-
dress field of the 9-row left word on the data card. The remainder of the card

is optional.

Either a row-binary preface card from the squoze deck of the program must
be readied in the card reader after the data card, or the squoze tape of the pro-

gram to be analyzed must be mounted on A5.

Several preface cards, squoze tapes, files on one squoze tape, or any
combination thereof may be processed in succession by following the instruc-
tions printed on-line.

3.12.2 Output Requirements

SUMARY computes the number of core locations available for modprocess-

ing (called the mod packet count limit) and then, using a rule of thumb de-
scribed under Method below, estimates the maximum number of cards the mod

deck may contain. Additionally, if the input was a squoze tape, SUMARY shows
the separation count.

All output from SUMARY is on-line. Thus, in the time it takes the operator
to rewind and remove the tapes used for the compilation that created the squoze

tape or deck (the symbolic listing, library, SOS, and intermediate tapes),
SUMARY can be executed, requiring only the squoze tape or one squoze card.

3.12.3

a)

Method

Rule of Thumb--approximate maximum number of allowable mod cards

for Project Mercury will equal three-tenths of the mod packet count
limit. Therefore, every three cards in the mod deck will require ten
locations for processing. This rule of thumb has been accepted because

3-111

MC 63-4

experience validates the following assumptions:

1) Ordinarily ALTER is used for the vast majority of modify and load
pseudo-instructions. SomeCHANGEcards are used.

2) Very few remarks cards and list control pseudo-instructions
(SPACE, EJECT, DETAIL, etc.) are inserted for execution runs.

3) Essentially all inserted principal and generative pseudo-instruc-
tions (the latter category including DEC, OCT, BCI) will have
location symbols.

4) The symbolic insertions cause essentially no additional "doubly-
defined" symbol errors.

5) Every symbolic insertion makes, on the average, slightly more
than one symbolic reference in its variable field.

6) The number and type of items deleted from the program by the
mod deck has no effect on the size of the possible mod deck, ex-
cept for the number of ALTER cards.

7) Few of the ALTER cards call for pure deletion. Most are either
deletion with replacement or pure insertions.

s) The number of core locations required for processing mods is:
4 for each ALTER card, 2 for each inserted remarks card and
inserted SOS pseudo-instruction of any kind (principal, generative,
or list-control), 1 for each inserted location symbol, and i for

each symbolic reference in the variable field of an inserted sym-
bolic card.

Therefore, a typical 300-card mod deck for the Mercury Program-
ming System might include:

Type of Cards

A LT ER

CHANGE

Machine and macro instructions

Remarks and list-control pseudo-
instructions

Principal pseudo-instructions

Generative pseudo-instructions

No. of
No. of Locations

Cards Required

20 80

5 40

70

5 10

100 200

100 200

3-112

MC 63-4

b)

Location symbols attached to instructions,
macros, and pseudo-instructions

Symbolic references in the variable fields
of inserted symbolic cards

300

150

320

1000

In observing the relationships above, certain procedures for opti-
mizing the mod deck become apparent. For example, it would be
prudent to replace a BSS 1 with a PZE 0. It would be advantageous
to gather all remarks cards for one routine in one place, perhaps
at the start of the routine, and confine other comments to notes

alongside the instructions rather than interspersing isolated re-
marks cards throughout the routine. It would pay to conserve the
use of symbols and certain pseudo-instructions such as EJECT.
But most apparent, it would help greatly to eliminate CHANGE
and to reduce the number of ALTER cards. It would be better to

say ALTER 3, 6 and reinsert the two instructions formerly at alter
numbers 4 and 5 than to say ALTER 3,3 and ALTER 6, 6.

The separation count is the total number of machine instructions (in-
cluding those generated by the generative pseudo-instructions, such as
LBR and MACRO plus the number of principal pseudo-instructions).
This quantity appears in the address of the last word of the second
dictionary in a squoze deck. If the SUMARY input was a squoze tape
(SSW#2 up), the tape is advanced to pick up this word and read it out.
The maximum value of the separation count is 32767; if this limit is
exceeded a recompilation of the program fails and SOS prints out the
last symbolic card processed and the message COUNT TOO HIGH,
COMPILATION STOPPED. Thus, for large programs such as
CADFISS or MERCURY OPERATIONAL SYSTEMS, the difference be-

tween this number and the limit is important in planning additions or
revisions of the system and changes to the scheme for multicompila-
tions of the system.

3.12.4 Usage

One of the limitations imposed on the Mercury Programming System by
SOS is the maximum size of the modification deck for an SOS Load and Go run.

The length of time a compilation can be used before recompiling depends upon
the number of modifications which can be made. To increase the life of a com-

pilation, the multi-compilation scheme is provided. The size of the modification
deck is dependent on:

a) The squoze tape size with respect to the number of symbols, pseudo-
instructions, and other SOS quantities.

3-113

MC 63-4

b) The version of the SOStape being used for the executive runs.

c) The type of modifications being attempted.

The quantities from the squozetape, which are used by SOSto allocate core
storage for tables to process the mods, appear on the first card of the squoze
deck, called the preface card. This card may be the first or secondrecord of
each file on the squozetape, dependingon whether a replica of the JOB card
waswritten at the start of the squozetape file by the particular version of SOS.
Stackedsquozedecks from successive CPL or PS runs are separate by an EOF
mark on the squoze tape.

The number of modifications which may be processed in the available core
storage space is also a function of the space required in core storage by the
SOS programs. As previously stated, this is presently a fixed constant of

1700410. The constant for any given SOS tape is computed as follows:

(All numbers are decimal except location numbers which are in
parentheses and refer to the contents of the address or decrement

of those locations when tested by the M3 section of SOS)

D

I =

F=

NL=

number of dictionary entries

number of introduction words

number of footnote words

2's complement of next location for storing squoze text

M = the algebraic sum of all quantities considered from the mod deck
called the "mod packet count limit."

Using the Mercury SOS tape and an ordinary mod deck (which has no ERASE,
ASSIGN, or SYMBOL pseudo-ops), an error message, MODIFICATIONS
EXCEED LIMITS will be printed if:

I 3 c(77731) dc(77722)a+C(77722)d > c(77730)a- 74+ c(77637)d+ c(77730)d+

+ c(77734)d + c(77735)d + c(77736)d + 2c(77740)dl •

where c(77722)a =

c(77722) d

c(77730) a

2D + F + 3930, therefore fixed by the compilation. The
constant 3930 is fixed for a given SOS tape; in the unmodi-
fied IB version from New York it is 5030.

1 for each symbol in the variable field of mods.

= -10000 (=22768), a constant for a given SOS tape.

3-114

MC 63-4

c(77637)d =

c(77730)d =

c(77731) d

c(7734)d =

c(77735)d =

c(77736)d =

c(77740)d =

74 =

I from the compilation.

NL: maximum 1760, minimum 1530, not under programmer
control.

2 for each ALTER and CHANGE in the mod packet. Multiplied

by 3/2 in the above inequality.

2 for each EQU, SYN, or BOOL in the mod deck.

I inserted by the mod packet.

F added by the mod packet.

2 for each CHANGE and for each principal pseudo-instruction
without a location symbol; 1 for each ALTER, i for each loca-

tion symbol; and 1 for each principal pseudo-instruction.
Multiplied by 2 in the above inequality.

constant for a given SOS tape.

Immediately after the compilation is performed, since D, F, I, and the con-
stants 3930, 22768, and 74 are known, the original inequality reduces to:

(2D+ F+3930) _ 22768- (I + 74+M+ NL).

That is, the failure will occur if M reaches (18764 - 2D - F-- I - NL). Since
the maximum value of NL is 1760 and the actual instantaneous value is not pre-

dictable, the safe limit is reduced to 17004 - (2D + F + I).

An SOS modification deck consists of one or more Modify and Load pseudo-

instructions (ALTER, CHANGE, ERASE, ASSIGN, SYMBOL), plus any desired
insertions to the program in the form of symbolic cards which may include
macMne instructions, pseudo-instructions, macro instructions, and symbolic
locations and comments.

Certain combinations of these require more storage area for processing

than others. By judicious choice and arrangement of the pseudo-instructions
and symbolic insertions, the mod deck can be optimized, greatly increasing
the allowable number of modifications. Conversely, very small mod decks can

be produced which quickly exhaust the available storage.

a) Operator Procedures:

1) Ready the SUMARY binary program deck with data card behind it
in the on-line card reader.

2) Either ready a squoze tape on A5 (it will be there already if
created during an SOS CPL or PS job with SSW#6 up) or ready the

preface card of a row-binary squoze deck in the card reader be-
hind the data card.

3-115

MC 63-4

b)

c)

3) Press CLEAR and LOAD CARDS.

4) An HPR should occur almost immediately after an on-line printer
message (requesting either SSW 2 be depressed or the tape num-
ber of the squoze tape be entered in the console keys in BCD,
right-justified) is printed. Tape number 285 would then be en-
tered as 000000021005. After setting the sense switch or keys,
press START.

5) After the SUMARY analysis has been printed, a halt occurs to per-
mit the operator to select one of these options:

(a) SSW #2 down if a preface card in the card reader is to be
analyzed.

(b) SSW #1 up if finished or if the operator wants to analyze the
first job on a squoze tape.

(c) SSW #1 down to analyze the next job on the same squoze tape

as the one just processed.

After selecting the option, press START. If (a) were chosen, re-
peat procedure from step (4).

6) A finalhalt occurs:

(a) If finished, press CLEAR and retrieve the SUMARY deck from
the card reader.

(b) To analyze the first job on another A5 tape, ready that tape
and press START. Repeat from step (4).

Error Conditions--an HTR occurs after ten unsuccessful attempts to

read A5. Check the density setting and press START to accept the

next attempt and continue.

Interpretation of Output--while SOS quantities listed in the SUMARY
analysis are exact, the estimate of the number of mods possible is an

approximation and should be used only as a guide to plan the time for
rec ompiling.

Moreover, it should be emphasized that the SUMARY program was
created to aid in avoiding only two known SOS limits--I) having the job
rejected by SOS because modifications exceed limits; 2) having a com-
pilation fail because of a COUNT TOO HIGH.

There are several other limits and restrictions which apply; among

these are: (1) the fixed number of dictionary entries permitted (8000),

3-116

r

d)

e)

MC 63-4

(2) the fixed number of footnotes (principal pseudo-instructions) wMch
may be inserted (1000), (3) the number (20) and size (about 120 loca-
tions) of programmer macros which may be redefined or defined at load-

and-go-time, and (4) the prohibitions against altering in or out any
HEAD cards, or altering out any remarks of list-control pseudo-
instructions, or altering in any LBR cards.

Subroutines Used:

1) SUBR--performs a binary-to-BCD conversion for integers

2) SUPRES--suppresses leading zeros from a BCD word

3) CAP--converts BCD to Hollerith card image and reads out one line
on-line, maximum of 72 characters

4) SKPUP--given a word count W = 23N + r, reads from A5 N records
if r= 0, N+ lrecordsifr{0.

Notes:

The following notes pertain to the SUMARY program flow chart, Figure
3-7.

Block 1--initialization consists of reading the data card with the SOS
constant, storing the constant, and ejecting a page on the printer.

Block 2--self explanatory.

Block 3--CAP is entered three times to print a three-line request of
the operator to enter the number of the squoze tape in the keys or, if
input is from the card reader, to depress sense switch #2. The printer
then ejects a page and the computer halts until the operator presses
START.

Blocks 4-6--self explanatory.

Block 7--one record is read from the squoze tape.

Block 8--self explanatory.

Block 9--the redundancy counter is reset to the maximum value, ten.

Block 10--some squoze tapes start each file with a replica of the JOB

card ahead of the preface card. This must be bypassed by SUMARY.
The 9L word of the preface card (and any squoze card) is minus; a
plus word is assumed to be a JOB card.

3-117

MC 63-4

Blocks 11-13--self explanatory.

Block 14--CAP is entered twice to print a 2-line message informing the

operator that ten successive redundancies occurred while trying to
read one record from A5.

Block 15--if START is pressed, an eleventh attempt is made and ac-
cepted, and processing continues.

Block 16--the 12 BCD characters from columns 16-27 of the original
JOB card are obtained from the preface card and placed in a line image
which CAP then processes.

Block 17--the compilation date is obtained from the preface card and
CAP is entered to print four lines--the date, a blank line, a note that
all numbers are decimal rather than octal, and another blank line.

Block 18--each of the following eight SOS quantities are obtained from
the preface card and read out using the subroutines SUBR, SUPRES,
and CAP:

D--number of dictionary entries (symbols and principal

pseudo-instructions).

I--number of introduction words (generative pseudo-instruc-
tions and first of each sequence of remarks cards and list-

control ps eudo-instructions).

F--number of footnote words (principal pseudo-instructions
except HEAD).

Number of words of noncommentary text (zero with squoze
tapes produced by the current SOS).

Number of words of text with commentary.

Number of programmer macros.

Number of HEAD cards.

Number of alter numbers.

Block 19--the quantity (2D + F + I) is computed and read out, using the

subroutines SUBR, SUPRES, and CAP.

Block 20--the SOS constant less the quantity (2D + F + I) is called the
mod packet count limit and is the number of core locations available

for the rood processing. Itis computed and printed using the subroutines

3-118

MC 63-4

SUBR, SUPRES,and CAP. A blank line is then printed. The maxi-
mum number of mod cards possible for an SOSexecution run is equated
to three tenths times the roodpacket count limit computedabove, using
the rule of thumb described earlier. This number is computedand
printed, using the subroutines SUBR, SUPRES,and CAP.

Block 21--self-explanatory.

Block 22--when input is a squoze tape (rather than cards} the additional

quantity "separation count" described above is computed and printed
out, using the subroutines SKPUP, SUBR, SUPRES, and CAP.

Block 23--two blank lines, five explanatory comments, and three more
blank lines are printed, using CAP for each line. If input was tape, a
sixth comment concerning the separation count limitation on the com-
piler is printed before the three final blank lines.

Blocks 23-25-- s elf-explanatory.

Block 26--a page is ejected on the on-line printer and the program in-
structs the operator with a 2-line message (using CAP twice} as fol-
lows:

PRESS START TO ANALYZE NEXT PREFACE CARD.

IF DONE, PRESS CLEAR. RETRIEVE THE SUMARY DECK
FROM THE CARD READER.

The printer skips three blank lines and the computer comes to a final
halt. The operator should either press START, returning control to
the initialization section of SUMARY, or CLEAR, and get off the
machine.

Blocks 27-28--the number of the squoze tape, which the operator
should have entered in the console keys, is printed in a final comment

after which a page is ejected on the on-line printer.

Block 29--the program notifies the operator of the following option and
then halts:

Depress SS 1 to analyze the next job on the same squoze

tape,

Leave SS 1 up to analyze the first job on another squoze

tape, to analyze a preface card, or if the run is complete.

Blocks 30-31-- self-explanat ory.

3-119

MC 63-4

Block 32--the program notifies the operator of the following options
and then comes to a final halt:

If the run is completed, press CLEAR and retrieve the
SUMARY deck from the card reader (as well as the output
from the on-line printer).

If the first job on another squoze tape is to be analyzed, that
tape should be readied and START pressed, returning control
to the initialization section of SUMARY. At this point, card

input may be introduced by readying row-binary preface card(s)
in the card reader and pressing START. Later sense switch
#2 will have to be depressed to designate card input.

Block 33--self- explanatory.

Blocks 34-38--either one or two EOF marks may separate stacked jobs
on the squoze tape. This routine positions the tape for the next job
regardless of which condition exists.

Block 39--self-explanatory.

3-120

MC 63-4

I CLEAR,
LOAD CARDS

1 t START

INITIALI ZE

2 + INIT

CLEAR BUFFER

&

TEMP. STORAOE

3 t
R CAP \

EQUEST A5 TAPE\
NO. OR SSW 2 /

DOWN /

J READ PREFACE

CARD FROM

CARD READER

REWIND A5 I

READ RECORD !
FROM SQUOZE

TAPE

i LINK

REDUNDANCY) YES

9 p NO

REINITIALIZE I

REDUNDANCY
COUNT

lO t
 oscA o)
o

16 (_LINK +5

NAME OF JOB

NOTE, BLANK /

IGHT SOS QUANTITIES)

FROM PREFACE /

I COMPUTE AND J

OUTPUT

2D&F+I

13

BACKSPACE

SQUOZE TAPE

ONE RECORD

REREAD]
SQUOZE RECORD

11 REDO

I COUNT NUMBER
OF TIMES

THROUGH HERE

(T NT,MES
14 i YES

REDUNDANCY

MESSAGE

FIGURE 3-7. SUMARY PROGRAM FLOW CHART (Sheet 1 o[2)

3-121

MC 63-4

2o
ICOMPUTE,OUTPOT'I

"MOD PACKET COUNT|
LIMIT," MAXIMUM J

MOD CARDS" J

SSW 2 UP

22

_ COMPUTE, OUTPUT i

COMPILER

UNIT

IJ_o
23 T_

<cAP>BLANK LINES,

NOTES,

24 BLANiLINES

(-SSW 2 UP

25 _ RDIN].

CAP 28 l

AL COMMENT

FOR CARDS FINAL COMMENT/

FOR TAPE /

CAP

OPTION OPERATOR'S
OPTION

ENTER, STORE
TAPE NUMBER

FROM KEYS

CLEAR

SSW I UP

YES31 tint nAP

REWIND, UNLOAD
SQUOZE TAPE

32

<cAP>OPERATOR'S

OPTION

l

33

L
34

l
EJECT PAGE

ON ON-LINE

PRINTER

t
ADVANCE

SQUOZE TAPE

TO EOF

35 l

I ADVANCE TAPE I

OVER SECOND

EOF OR

1 RECORD

TURN OFF

EOF INDICATOR
FROM

FIRST FILE

t
' SECOND EOF

_,, PASSED

38 t NO

BACKSPACE
SQUOZE TAPE

ONE RECORD

JL

39 !--

L TURN OFF

REDUNDANCY
INDICATOR

FIGURE 3.7. SUMARY PROGRAM FLOW CHART (Sheet 2 of 2)

3-122

MC 63-4

3.13 PAPER TAPE INPUT PREPARATION (PAPTAP)

PAPTAP is the common name of two independent programs, PAPTAP-A
and PAPTAP-B which are used in the preparation of paper tape inputs, in tele-
type coding, for the Mercury tracking program. These paper tapes are used to

simulate receipt of radar data. They are fed to the tracking program from
local tape readers (ASR's) or they may be shipped or transmitted to radar sites
for long-distance retransmission to the computer.

3.13.1 Method

The source data for PAPTAP is a magnetic tape prepared by the Mercury
simulation programs for use by SIC. This input tape contains the radar data
needed. In the first of two runs (using PAPTAP-A), the radar is properly for-
matted and is punched on paper tape. In the second run (using PAPTAP-B), the
SIC input tape is compared with the punched paper tape. When a discrepancy is
found, the program stops and displays the error in the A-register.

The only comments which may be needed for an understanding of the flow
charts (Figures 3-8 and 3-9) are these: A complete radar transmission always
begins with J, J, LRTS, CR, LF, LTRS; and always ends with BLANK, FIGS,
H, LTRS. The two key points for the programs are the initial J and the final H.
Both programs search for the initial J and, having found it, output it (or com-

pare it) and succeeding characters until the H is found. Having found the H,
they assume that the next character is LTRS, and therefore immediately begin

searching for the next J.

Since the programs depend upon finding the initial J and final H, trouble
may occur when radar data with simulated teletype errors is used. That is, it
may well be that the 5-bit coding for H will appear (as a simulated error) before
the actual end of transmission, or that the final H will not occur at all. In short,
unless greater redundancy is built into the program (e. g., searching for five
out of six of the characters J, J, LTRS, CR, LF, LTRS for the beginning of a
transmission and a corresponding scheme for the end of transmission), it is
possible to produce a tape with incorrect data.

3.13.2 Magnetic Tape Formats

The first record on tape is a label, and it is skipped over by the program.
Each succeeding tape record contains 22 logical records. The appearance of
each logical record in the memory of the IBM 7094 (which was used to produce
the magnetic tape) and in the memory of the CDC-160 is illustrated below.

3-123

MC 63-4

IBM 7094:

Word 1

2

3

4

5

6

7

8

9

- 36 bits

Time of arrival

No. of words and subchannel No.

Time for interrupt

31 zeros xxxxx

31 zeros xxxxx

31 zeros xxxxx

31 zeros xxxxx

31 zeros xxxxx

31 zeros xxxxx

End of logical record

6 teletype
characters

CDC-160:

Word 1-6

7-12

13-18

19-23

24

25-29

30

31-35

36

37-41

_- 12 bits _.

Time of arrival

No. of words and subchannel No.

Time for interrupt

All zeros

O000000XXXXX

All zeros

O000000XXXXX

All zeros

O000000XXXXX

All zeros

lEach 7094 6-bit

byte is preceded

by 6 zeros.

First TTY
character

Second TTY
character

Third TTY
character

3-124

MC 63-4

42

43-47

48

49-53

54

0000000XXXXX

All zeros

0000000XXXXX

All zeros

0000000XXXXX

End of logical record

Fourth TTY

character

Fifth TTY
character

Sixth TTY
character

3.13.3 Paper Tape Formats

The paper tape produced by PAPTAP has the usual teletype radar format
illustrated below. This format differs from the sequence of teletype characters
on magnetic tape in one respect only: teletype characters appearing on mag-
netic tape between the end of one transmission and the beginning of the next are

not punched on the paper tape.

The output format consists of three sections: preamble, variable number
of radar reports, and end-of-transmission sequence. These sections imme-
diately follow one another.

a) The preamble consists of the six characters J, J, LTRS, CR, LF,
LTRS.

b) Each radar report consists of:

Characters 1-3 CR, LF, FIGS

4 Kind of data

5-6 Station identification

7 Radar type

8 Data validity

9-14 Time in hours, minutes and seconds

15-20 Azimuth

21-26 Elevation

27-33 Range

34 OBLIQUE STROKE

c) The end of transmission sequence consists of the four characters
BLANK, FIGS, H, LTRS.

3-125

MC 63-4

INITIALIZA-TION I
t

OUTPUT I208BLANKS

t
SKIP IFI RST

READ I
NEXT

RECORD

END OF

NO
HALT I

HASJ BEEN

NO

ENDOF

RECORD

SELECT
NEXT TTY

CHARACTER
FROM MAG.

TAPE

ISITJ

YES I

SET FLAG

TO "YES"

FIRST I

CHARACTER
OF EACH

TRANSMI SSION
ISJ

SELECT
NEXT TTY

CHARACTER
FROM MAG.

TAP E

ISITH

YES

RESET FLAG

TO "NO"

OUTPUT H,

LTRS, AND

208 BLANKS

TRANSMI SSION
ENDS WITH H,

LTRS

NO

END OF

RECORD

OUTPUT

CURRENT

CHARACTER

FIGURE 3-8. PAPTAP.A PROGRAM FLOW CHART

3-126

MC 63-4

JYES

END OF RECORD__

SELECT NEXT
TTY CHARACTER

FROM MAG.

TAPE

r

NO /_ IS IT J

\
YES t

J SET FLAG a
TO "YES"

INITIALIZATION

SKIP

FIRST

RECORD

NEXT
RECORD

END OF FILE _ HALT

NO

, I
FIRST

CHARACTER
OF EACH

TRANSMISSION
ISJ

YES

END OF RECORD)

)

FIGURE 3.9. PAPTAP.B PROGRAM FLOW CHART (Sheet] o[2)

3-127

MC 63-4

IS IT H

YES

J RESET
FLAG

TO "NO"

RESET
FLAG

TO "NO"

READ NEXT
CHARACTER
FROM PAPER

TAP E

ISITH

J READ NEXT

CHARACTER

FROM PAPER
TAPF

IS IT LTRS

!
!
I

PROGRAM NOW
REEXAMINES

THE"H" FROM
MA_ TAPE

NO

%

EACH
TRANSf_ISSION

ENDS WITH
H, LTRS

I
-I

ERROR HALT _,J PROG. HALT
_SPLAY PAPER DISPLAY/_a,G.

TAPE CHAR. TAPE CHAR.

DISPLAY PAPER DISPLAY MAG.

J J TAPE CHAR. TAPE CHAR.

I

SET H ADVANCE [

PAPER TAPE
FLAG TO FIRST

TO"YES" NONBLANK

READ NEXT]

CHARACTER
FROM PAPER

TAPE

YES_OOT*OTAPES_MATCHJ

HO_

ERROR HALT]

DISPLAY PAPER
TAPE

CHARACTER

PROGRAM HALT 1
DISPLAY MAG.

TAPECHAR.

FIGURE 3-9. PAPTAP.B PROGRAM FLOW CHART (Sheet 2 0[2)

3-128

MC 63-4

3.14 LOW-SPEED OUTPUT PRINTER PROGRAM (MXTHLG)

MXTHLG examines the MXPRLG output tape for low-speed TTY data re-
ceived from Mercury radar stations and unpacks, converts, and formats it for
off-line printing.

The flow chart for MXTHLG is shown in Figure 3-10.

3.14.1 Input Requirements

Input to MXTHLG is the output tape from the MXPRLG program for a Mer-
cury mission, simulated or unsimulated, and a 4-card deck prepared for the on-
line card reader. The cards contain internal station numbers, a density mutila-
tion coefficient constant, and the ID for the data (mission).

3.14.2 Output Requirements

The output tape A3 will contain in decimal form all low-speed input data
received at Goddard during a mission. When printed, each line of data from the
output tape contains a radar message listing: kind of data, internal station num-
ber, valid, type of radar, time of message (hours, minutes and seconds),
range, azimuth, and elevation. For example:

KIND INTERNAL TYPE
OF STA. OF

DATA NO. RADAR

X XX X

TIME AZ IMUTH

VALID HR. MIN. SEC. (degrees)

X XX XX XX XXX.XXX

ELEVATION RANGE

(degrees) (yards)

XXX. XXX XXXXXXXX. XX

3.14.3 Method

MXTHLG reads all data from the MXPRLG output tape, separating the low-

speed data from other messages, and edits and writes this on an auxiliary tape
to produce a low-speed TTY tape. The program reads data from the TTY tape,
repacking and converting it to the correct format, and then writes the reformat-
ted data on the output tape.

3-129

MC 63-4

3.14.4 Usage

Operator's Procedure:

a) Ready A4 with an output tape from MXPRLG.

b) Ready A3, A5 with blank tapes.

c) Ready A9 with FORTRAN written station characteristic tape.

d) Ready C1 program tape (postflight).

e) Ready cards in on-line card reader.

f) Sense Switches 1 and 7 down. *

g) Press CLEAR and LOAD CARDS buttons.

h) Print A3 under program control.

*Other Sense Switches offer various options (see flow chart).

3-130

MC 63-4

SW4 DOWN

O

J EADCARDSI
DATA FOR CONVERTING|

EXTERNAL TO J

INTERNAL STA. NO. J

I READWITHCARD JDATA - RCONS

ANDIDAY

SW5 DOWN

NO

TVLSPG

i

J READ-CARDS;

ID OF

RUN

J READ-CARDS; I

MAXIMUM SCALE
FACTOR _R
AA, AND AE'

READ: t, "_,

FROM

B6 TAPE

REWIND B6

READ DATA

CARD WITH

HO AND HS

l
IS BCD (ID)

CARD g 0 j YES
J

READ CARDS _=_ IS LAST YW_=_OBSERVED RECORD ON

DATAR0'A0' E0 J _APE = 00099J l

_ NO

I WRITE OBSERVED J

DATA R0, A0e E0

ON A4 TAPE

t

READ - A5 J

=-- TAPE: t0, R0,

A 0, E0 -

OBSERVATION

t
QOESRECORO YES_ri"

ONTAIN 00099 j)_

NO

PUNCH - J

OBSERVATION

t 0, R 0, A 0, E0

ON-LINE PUNCH

WRITE SENTINEL J

ON A4 TAPE

FOLLOWING

WITH EOF

FIGURE 3.10. MXTHLG PROGRAM FLOW CHART (Sheet 1 o[10)

3-131

MC 63-4

SET TEMPORARY

STORAGE CELLS

TO ZERO

(YEsIWRTHAONO OSW1 DOWN _ ID AT TOP OF PRINT

PAGE (A3 TAPE)

__NO I

SW3 DOWN ID AT TOP OF PRINT
PAGE (ON-LINE PRINTER)

SW1 DOWN

YES J READ CARD - _XlMUM I

NO

I READT, R,_'MASS, I
AREA, ETC. FROM CARDS

YES I WRITE HEADING AND I

ID ON A3 TAPE - SET
FOR A7-OUTPUTIPRINT _= 0

NO

WRITE - T, R, V ON

A3 TAPE

T._O.-L,.__,._

INO I

6
FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 2 o[10)

3-132

MC 63-4

WRITE SECOND J

PART OF HEADING

ON A3 TAPE

(s oowN)
11__ NO

J COMPUTE: N WHERE N J

INDICATE HOW FAR TO

INT EGRATE_B__CKWARDS
FOR T OF R, V VECTOR

I CONVERT TIMES FROM

HRS, MINS AND SECS
TO MINUTES OF LIFTOFF

Tv, AND T s

ESTABLISH THE (HO) I

ORBIT TABLE BY IN- I
TEGRATING BACK TO N |

AND FORWARD TO 900 MINSI
I

l

SAVE ORBIT

(HS) TABLE
WITH (AT = HS)

SW5 : DOWN j

J READ FORTRAN STATION
CHAR. TAPE - R.E_,TORE

INITIAL T, R, V
VECTOR

t
COMPUTE TMI N AND

TMA X OF ORBIT TABLE

J FOR LAGRANGE NTERPOL.

YES

I WRITE SECOND I

PART OF HEADING

I ON ON-LINE PRINTER

I
YES I WRITE ORBIT TABLE

j ON A3 TAPE

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 3 of 10)

3-133

MC 63-4

J READ OBSERVATION]

FROM TAPE A5
To, Ro, Ao, Eo

l

CONVERT:FROMIEXTERNAL STATION J

NO. TO INTERNAL STA.NO.J

i

CONVERT: TIMES I

FROM HOURS, MINUTES,
SECONDS TO MINUTES

OBSERVATION
LIVE DATA

_ NO

TO TIME OF

OBSERVATION

INTERNAL STATION_ YES
NUi'/_,E R = 2

NO

(INTERNAL STATION_
NUMBER = 19 J

NO

(INTERNAL STATION_ YES '
NUMBER = 20 J

: NO

/ TVCVPG >

t

(,sT.,SOATATO"_BE PLOTTED

OFF-LINE J

L_ NO

EXBIT >

YES

I SET UP HEADING AND ID

FOR B7 TAPE FOR

OFF-LINE PLOTTING

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 4 of 10)

3-134

MC 63-4

®

?
ON A3 TAPE /

YES

I SET UP HEADING ANDID J
FOR PLOTS ANDGRAPHSI

ON A3TAPE J

SW6 DOWN

t NO

SWl DOWN

t NO

J CONVERT - TIME

OF OBSERVATION FROM
MINUTES TO SECONDS

INTEGR

!

_ ERROR RETURN

t NO

OBTAIN VALUES FROM

STA. CHAR. BLOCK FOR
REFRACTION COR-

RECTION TO Ro, Ao, F-o

CVINL >

>

COMPUTE: AA= A_.- A c J

AA = COS(_c) * _A

A E = Eo - E c

AR = Ro - Rc

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 5 o[10)

3-135

MC 63-4

©

CONVERT:
AA TO DEGREES
AE TO DEGREES

A R TO YARDS

CONVERT:

Ao TO DEGREES

Eo TO DEGREES
Ro TO YARDS

SAVE:

To= TIME i
Ro= RANGE i _FOR

Ao= AZIMUTH _PLOT
Eo= ELEVATION] TER_

IS THIS DATA FROM_SAME STATION

1230 _ NO

SWl DOWN

NO

J UPDATE ORBIT NUM-
BER BASED ON
CURRENT DATA

+
E o: 3 DEG.

COMPUTE: STANDARD

DEVIATION OF
AR, AA, AE

IS DATA OVER
30 MINUTES OLD

NO

,STH,SDATAFROM " YES
SAME STATION

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 6 of 10)

3-136

MC 63-4

ICOMPUTE:

SIGMAS

AR, AA, AE

¢
OUTPUT SIGMAS

OF AR, AA, AE AND
NO. OF VALID AND

NON-VALID
OBSERVATIONS

ONTO A3 TAPE

NO

F
RE-INITIALIZE

TEMP STORAGE
CELLS

(oRB,T_YEslTABLE REACH

,o,o_FT./ I
l -- NO

OUTPUT SIGMAS
OF _R, AA, AE AND
NO. OF VALID AND

NON-VALID
OBSERVATI ONS
ON THE ON-LINE

PRINTER

OUTPUT A3 TAPE _ _ PRINT ON-LINE

WITH: REENTRY, SW3 DOWN REENTRY, IMPACT
IMPACT POINT, POINT, LAT. & LONG

I_AT. & LONG.

t NO I

,_,s.,-oss.
OR PROCESSINGJ

(

YES

i NO

SWl DOWN _'_

II= II -1

SAVE LAST
TIME OF OBS.

SWlTCH SET FO_ YES /

APH AND PLOTS

ON A3 TAPEJ

l r NO

(

PLOT 2 >

t
PLOT 3 >

STNAME)

FPLOT4 >

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 7 of 10)

3-137

MC 63-4

SAVE:

TIMEo, RANGEo,

AZIMUTHo, E LEV.o

I OUTPUT HEADING J

AND ID FOR NEW
PAGE A3 TAPE

B,TAPEIOUTPUT('
TRIGGERED j

==NO

OUTPUT
SUMMATIONS

ON A3 TAPE

(SW3 DOWN

= NO

OUTPUT NEW OBSER-

VATION ON A3 TAPE

Ro, AR Ao, AA

Eo, AE

(SW3 DOWN

I
YES I OUTPUT FOR

i SUMMATIONS
O-.C FOR B7

I
YES J ON-LINE PRINT

= i O_ SUMMATIONS
OF Ro, Ao, Eo

YES I ON-LINE PRINT

OF NEW OBS. OF
Ro, Ao, Eo
AR, AA, AE

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 8 o[10)

3-138

MC 63-4

IS THIS THE

LAST OBS.

TO DATA

.o _

(SWl DOWN

t NO

OBSERVATION

OF SAME STATION_

_ NO

UPDATENUMBERORBIT ._

IKD>7

AFFI RM THAT

THIS IS LAST OBS.

OF SAME STATION

t NO

IKD = 7

_ NO

YES

IsET:,Ko:8I

t

< sw,.,.c,., YE S,sw,oo,,,, SET_OR,=,_OTS;.___
OHB,OR,_T,F'_I

END PLOTTING

AND GRAPHING

CONFORMATION

Ira,

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 9 o[10)

3-139

MC 63-4

(

WRITE ON A3 TAPE

OBSE RVATI ON

OF SAME STATION

SW3 DOWN

J NO

YES Jj PRINT ON-LINE

OBSERVATION

OF SAME STATION

SET: A o= 0

Eo= 0

Ro = 0

FIGURE 3-10. MXTHLG PROGRAM FLOW CHART (Sheet 10 of 10)

3-140

3.15 LOG TAPE HIGH-SPEED INPUT PROGRAM (HSIN7)

MC 63-4

HSIN7 examines the log tape for high-speed IP 7094, B-GE, or Bermuda
radar input messages.

The flow chart for HSIN7 is shown in Figure 3-11.

3.15.1 Input Requirements

The only input to HSIN7 is the log tape from a Mercury mission--simulated
or unsimulated.

A log tape is composed of one file which contains up to 9286 logging buffers;
each buffer is one record and is composed of ten 17-word logging blocks. Each
logging block begins with a 5-word heading; the remaining 12 words contain
either logged data or a nondata mask. The heading contains a data identifica-
tion by the DCC subchannel, an indication of whether the data was transmitted,
a data word count, a logging block serial count, the mission phase, and two
time tags. One time tag is associated with the data itself and the other speci-
fies the time the data was logged.

3.15.2 Output Requirements

The output tape contains the selected high-speed messages printed in tab-
ular form. Figure 3-12 shows the output of HSIN7. The heading on each output
page indicates IP 7094, B-GE, or Bermuda radar input followed by a heading
above each column. An explanation of the column headings is given below.

a) Logging Time--the time, in seconds, shown by the internal clock at
time of trap. If the internal clock were synchronized with Greenwich
Mean Time (GMT), this column would show GMT. In the example, the
message was logged at 44387.423 (or 12 hours), 19 minutes, and 44.4
seconds.

b) Message Time--the time associated with each of the incoming position
and velocity vectors. It is incorporated within the input message. In
the example in the table, the time of the position and velocity vectors
is 275. 000 seconds after liftoff.

c) X, Y, and Z--indicate the components of the position vector using the
appropriate units of the input source.

d) _ Y, and Z--indicate the components of the velocity vector using the
appropriate units of the input source.

3-141

MC 63-4

e)

f)

Discrete Signals--in the B-GE section, the discrete signal column

gives an octal representation of eight binary bits. Each of the binary
bits is contained somewhere within the input message. The first bit

indicates that liftoff has occurred, the next four bits are data quality

flags, the next two bits indicate Booster Engine Cutoff (BECO) and
Sustainer Engine Cutoff (SECO, respectively, and the last bit gives the
B-GE, GO-NO-GO recommendation.

Checksum--if the checksum in the input messages is identical to the

computed checksum, this column contains a zero; otherwise, it contains
a one.

g) Parity--the correct format for input messages is such that the parity
is always odd. An odd parity is indicated by a one in this column. A
zero indicates incorrect parity.

Table 3-1 gives the quantity associated with bits 1 through 72 of the telem-

etry format shown in Figure 3-12.

3.15.3 Method

(Not applicable.)

3.15.4

a)

b)

c)

d)

e)

f)

g)

Operator' s Procedures

Ready the standard SOS system tapes.

Ready the log tape on B6.

Ready a blank on A3 for output.

Ready the HSIN7 deck

Press CLEAR and LOAD CARDS.

Program will print operating instructions on line.

Set Keys = 1 for B/GE

Set Keys = 2 for IP 7094

Set Keys = 3 for BDA radar in radians.

Set Keys = 4 for BDA radar in degrees.

If a special binary output of B/GE or IP is desired set appropriate entry
key, place a blank tape on A4 and depress sense switch 1.

3-142

MC 63-4

I PAUSE

ENTER KEYS

IP7_4

SELECTED

READ

1 RECORD
FROMINPUT

TAPE

BGE

SELECTED

READ
1 RECORD

FROM INPUT
TAPE

BDA RAW
RADAR

IN RADIANS

READ
I RECORD

FROM INPUT
TAPE

BDA RAW
RADAR

IN DEGREE5

READ
I RECORD

FROMINPUT
TAPE

NO

END JOB

SELECTED

YES

WRITE EOF
ON OUTPUT
TAPE, RE-

WIND, UNLOAD

EOF EOF EOF EOF

EO RECORD EO RECORD EO RECORD EO RECORD

FOR SUB-

MOVELOGICAL
RECORD TO

OUTPUT BUFR
(ODD FRAME)

LOGICAL REC.
FOR SUB-

RECORD TO
OUTPUT BUFR
(ODD FRAME)

LOGICAL REC.
I FOR SUB-

MOVELOGICAL

RECORD TO

OUTPUT BUFR

LOGICAL REC.
FOR SUB-

=5or6

MOVE LOGICAL
RECORD TO

OUTPUT BUFR

EO RECORD

READ1
RECORD FROM

INPUT TAPE

EO RECORD

READ1
RECORD FROM,

INPUT TAPE

UNPACKANE

WRITE ON

TAPE

UNPACK AND

WRITE ON

TAPE

LOGICAL REC
FOR SUBCHAN

RECORD TO
OUTPUT BUFF

EVEN FRAME

UNPACK BOTH
FRAMES AND

WRITE ON
TAPE

LOGICAL REC
FOR SUBCHAN

=I

RECORD TO
DUTPUT BUFF.

EVEN FRAME

FRAMES AND
WRITE ON

TAPE

FIGURE 3.11. HSIN7 PkOGRAM FLOW CHART

3-143

MC 63-4

N_
D-- O0

_O _

_ OO _

_ O0 _
_ _ 00 0 _ _ _ _

_ OO OO

_ _ 0000 _ _ _
_ O0 _ 00_

_0 _ _00
_ _ _ _OO

8_ $_ _o_ _----oo----
N_ _00 _

• OO N_O _
_ 0000_ _

_ _ _00
0 00 _ _00

_ _ _ _ _ _ _ 00

_ _00 _ _00

_ "00 _0 "00
_ OOOO = _ 0000
_ O0 _
_ OO _ _ _OO

_ _ _OO

- _ _ = _ --oo_oo -8_ _8_ o_oo _ _oo
_ _OO X_-- _OO

X_ _OO

_ "OO _ _O

o _ oo_ o _ _oo OO
_ OO _ _OO

_ _ _ _--OO
O OO _ _OO

_ _ _N_ _OO
_ _ _00

I NNb ¢_OO NN _OO
_ 0000 _ --'00
_ _00 0 0
_ ''00 _0 O0
_ OOOO _ _OO
_ O0 _ _00
_ O0 _ _00

_ _ _00

__ _oo __ ___
--_ --_ OOOO

-o ooooOO _ _OO
_ _ _ _ _ 00

--_ O0 _ _00
_ _ X _ _ _ 00

--O _OO _ OOOO
_00 _ _00
_OO _

X _ _00 _ 0000
_00 -- O0
_00 _ _
-- "00 _ _
00 _ _ -- _ _

OO
OOoo x _

-- O0

_ O _ _

W _A

"_ 0 0 _ 0 0
W hi
rn m

ILl UJ
0 0

0 0 _ 0 0

0 LO

W uJ
C_ 0

0 0 _ 0 0

m m

_.0 qD 04 OJ

OJ ¢M • •

.-56 ,.

¢_ _o _D _ r_ I_

o o _k

._ _ _ ,., .4.4

0 0 OD OD
04 o

Z

6 S "" O,

_" N ¢D _D N

>44

._ 6 o -.

>

_ _ e4

I
L)

W (3o

-- m _

ID qD

12)

in in
> 04 e4

w _ _ X

!

h-

-r

_ O _

..J '_" '_t

3-144

MC 63-4

Table 3-1. TELEMETRY FORMAT, IP 7094AND B-GE

Bit No. Quantity Comment

1
2
3
4

5
6
7
8-9

10
11
12
13

14
15
16
17-25
26
27
28
29
3O
31
32

33 -42
43
44
45
46

47
48
49
5O
51
52
53
54
55
56

57
58
59
6O

Selected source (1)

Selected source (2)
Selected source (3)
Start BDA solution

1 of 3 Retrogrades fired
2 of 3 Retrogrades fired

3 of 3 Retrogrades fired
Spares

Source selected (1) Note 1
Source selected (2) Note 1
Source selected (3) Note 1
Start BDA solution 1 = START

1 of 3 Retrogrades fired 1 = Has occurred
2 of 3 Retrogrades fired 1 = Has occurred
3 of 3 Retrogrades fired 1 = Has occurred
Spares
3 of 3 Retrogrades fired 1 = Has occurred
2 of 3 Retrogrades fired 1 = Has occurred
1 of 3 Retrogrades fired 1 = Has occurred
Start BDA solution 1 = START

Source selected (3) Note 1

Source selected (2) Note 1
Source selected (1) Note 1
Spares

1 of 3 Posigrades fired 1 = Has
2 of 3 Posigrades fired 1 = Has
3 of 3 Posigrades fired 1 = Has
1 of 3 Retrogrades fired 1 = Has
2 of 3 Retrogrades fired 1 = Has
3 of 3 Retrogrades fired 1 = Has
Liftoff 1 = Has

Escape tower released 1 = Has
Tower escape rockets fired 1 = Has

Spacecraft separation 1 = Has
Abort sequence initiated 1 = Has
Abort phase has started 1 = Has
Orbit phase has started 1 = Has
Selected source (3) Note 3
Sustain engine cutoff 1 = Has occurred
Liftoff 1 = Has occurred

Escape tower released 1 = Has occurred
Tower escape rockets fired 1 = Has occurred

Note 1
Note 1
Note 1

1 = START
1 = Has occurred
1 = Has occurred
1 = Has occurred

occurred,
occurred,

occurred,
occurred,
occurred,
occurred,
occurred
occurred
occurred
occurred
occurred
occurred
occurred

Note 2
Note 2
Note 2
Note 2

Note 2
Note 2

3-145

MC 63-4

Table 3-1 (continued). TELEMETRY FORMAT, IP 7094AND B-GE

Bit No. Quantity Comment

61
62
63
64
65
66

67
68
69

70
71
72

Spacecraft separation 1 = Has occurred
Abort sequence initiated 1 = Has occurred
Abort phase has started 1 = Has occurred
Orbit phase has started 1 = Has occurred
Orbit phase has started 1 = Has occurred
Abort phase has started 1 = Has occurred
Abort sequence initiated 1 = Has occurred

Spacecraft separation 1 = Has occurred
Tower escape rockets fired 1 = Has occurred
Escape tower released 1 = Has occurred
Liftoff

Parity for previous 71 bits 1 = Even number of l's
0 = Odd number of l's

Notes:

1. Source selection is indicated by the following bit configurations:

(Bits-l, 10, 32)

Selected Source (1)

(Bits-2, 11, 31)
Selected Source (2}

(Bits-3, 12, 30, 56)
Selected Source (3)

B-GE 0 0 1
IP 7094 1 0 0
BDA 0 1 0

0

3-146

o

o

o

Retrogrades TLM bits 46, 47 and 48 will remain until GSFC has
made the program changeover. These bits will then be disconnected
and used as spares.

Selected source (3) will be wired to bit 56. This arrangement has a
twofold purpose: (1) enable the program to use the new TLM format
without implementing a program change, and (2) if they inadvertently
selected Bermuda without Short Arc incorporation they will auto-

maticaUy select IP 7094. This particular bit will be disconnected
and used as a spare after the program changeover.

Sustainer Engine Cutoff signal is generated by operation of the SECO
Over-ride switch at the Spacecraft Communicator's Console. Oper-
ation of this switch inserts a "one" in bit position 57 and also into the
three Abort Sequence Initiated bits, 53, 62, and 67.

This format constitutes a complete Telemetry Event Data Message.
Transmission of this message is repeated each 74 milliseconds.
The most significant bit is transmitted first.

MC fb¢_ ADO--_

3.16 LOG TAPE HIGH-SPEED OUTPUT PROGRAM (MXHSPR)

MXHSPR examines the log tape for high-speed output data transmitted
to Cape Canaveral (DCC subchannel 3). This data is unpacked, scaled, and ar-
ranged for off-line printing. The flow chart for MXHSPR is shown in Figure
3-13.

3.16.1 Input Requirements

The only input to MXHSPR is the log tape of a Mercury mission--simulated
or unsimulated--on tape unit B6. The log tape is described in subsection 3.15.1.

3.16.2 Output Requirements

The output tape, A5, contains the high-speed output data transmitted by
Goddard to Cape Canaveral in tabular form. The data is segregated both by

mission phase and by the displays serviced by the particular data.

When printed, each line of print from the output tape contains the logging
time tag expressed in hours, minutes, and seconds of GMT. The remainder of
the line depends upon the data and is a function of display equipment, code, mis-
sion phase, and the data frame.

The following examples of MXHSPR output show the computed values trans-
mitted to Cape Canaveral to drive plotboards 1, 2, and 4 and the digital displays

(during launch plotboard 3 is not drived from Goddard). MXHSPR searches the
log tape for values transmitted to, for example, plotboard 1 at Cape Canaveral
during the launch phase. These values are then assembled and printed under the
heading LAUNCH PHASE--PLOTBOARD ONE as shown below.

LAUNCH PHASE -- PLOTBOARD 1

v/v r v/v r

(less than . 19) _ (less than . 9)

.00000000 .03999999 .00000000 .00000000

.00000000 .03999999 .00000000 .00000000

.00000000 .03999999 .00000000 .00000000

.00000000 .03999999 .00000000 .00000000

.00000000 .03999999 .00000000 .00000000

.00000000 .03999999 .00000000 .00000000

3-147

MC 63-4

LAUNCH PHASE -- PLOTBOARD 1 (Cont'd)

TIME

v/v
r

(greater than . 9)

--.99999809

--.99999809

--.99999809

--.99999809

--.99999809

--.99999809

.89999998

.89999998

.89999998

.89999998

.89999998

.89999998

Plotboard 1 shows flight path angle)' and velocity ratio V/V r associated

with a TIME column. TIME is in seconds after liftoff. Because of plotboard

scaling, three columns of both _ and V/V are shown.r

The same operation is performed for the other plotboards and displays
during the launch phase. MXHSPR also searches the log tape for the values
displayed during the orbit phase. The values are assembled and printed under

the heading ORBIT PHASE. Subheadings are printed for each of the plotboards,
wall map, and digital displays as noted in the examples.

Some displays, for example plotboard 1, show different quantities during
the launch and orbit phases. During launch, plotboard 1 shows flight path angle

vs. velocity ratio (V/Vr); during orbit it shows altitude vs. velocity.

The example for plotboard 2 shows crossrange deviation (Y --Ynom) and

downrange distance D (D less than 60). TIME is in seconds after liftoff and ad-

ditional columns of downrange distance, height H (D less than 60) are shown
because of scaling.

LAUNCH PHASE -- PLOTBOARD 2

D (D less H (D less D (D greater H (D greater

Y-Ynom than 60) than 60) TIME than 60) than 60)

.05865091 .00000000 .00000000 1 .00000000 .00000000

.05865091 .00000000 .00000000 1 .00000000 .00000000

.05865091 .00000000 .00000000 2 .00000000 .00000000

.05865091 .00000000 .00000000 2 .00000000 .00000000

.05865091 .00000000 .00000000 3 .00000000 .00000000

3-148

MC 63-4

The first two columns of the plotboard 4 example show the latitude and

longitude of the impact point during launch if the firing of the retrorockets was
withheld until the spacecraft reached an altitude of just above 450,000 feet.
The next two columns show the impact point if the escape rockets were fired

immediately. Also, if tower separation has already taken place, then these
columns show impact point if retrorockets are fired 30 seconds from present
time. The column TIME indicates time in seconds associated with each set of

values.

LAUNCH PHASE -- PLOTBOARD 4

LATITUDE LONGITUDE LATITUDE LONGITUDE

(maximum) (maximum) (30 seconds) (30 seconds) TIME

11.99999809

11.99999809

11.99999809

11.99999809

11.99999809

--. 00586510

--. 00586510

--. 00586510

--. 00586510

--. OO58651O

28.49266434

28.49266434

28.49266434

28.49266434

28.49266434

--80. 50439835

--80.50439835

--80.50439835

--80. 50439835

--80.50439835

The following example shows the values transmitted to the wall map at
Cape Canaveral and the time in seconds after liftoff that the transmission oc-
curred. It shows latitude, longitude, and time (present position of spacecraft.

LAUNCH PHASE -- WALL MAP

LATITUDE (P. P) LONGITUDE (P. P) TIME

28.50439644

28.50439644

28.50439644

28.50439644

28.50439644

--80.41055679

--80.41055679

--80.41055679

--80.41055679

--80.41055679

Data transmitted to the strip charts (see the following example) is the result

of computed values (as a result of input) versus nominal values. The first col-

umn is _-Tnom from B-GE data. The second column would be the same

(7-_nom) for either IP 7094 or raw radar data whichever is the selected source.

The next two columns show the difference in velocity ratios IV VrlV (nominal)
r

for B-GE and the IP 7094. The TIME column contains time in seconds after

liftoff.

3-149

MC 63-4

LAUNCH PHASE -- STRIP CHARTS

_-_nom

(AN/FPS-16)

v/% - v/% norav/% - v/vrnom

(B-GE (AN/FPS-16) TIME

--.00488663

--.00488663

--.00488663

--.00488663

--.00488663

--.00488663

--.00488663

--.00488663

--.00488663

--.00488663

--.00003913

--.00003913

--.00003913

--.00003913

--.00003913

--.00003913

--.00003913

--.00003913

--.00003913

--.00003913

The output of MXHSPR to some of the digital displays during launch is
shown below. Following these examples is a glossary of the column headings:

LAUNCH PHASE -- DIGITAL DISPLAYS

T Recovery Area TIME

00 00 00 0 0

00 00 00 0 0 1
1

00 00 00 0 0 2
2

00 00 00 0 0 3
3

00 00 00 0 0 4

r -- R 7 I.A. O.C. V/V
r

000.0 00.00 00.0 00 0.0000

000.0 00.00 00.0 00 0.0000

000.0 00.00 00.0 00 0.0000

000.0 02.30 28.3 00 0.0510

000.0 02.78 28.3 00 0.0511

AT -- This column indicates elapsed time to fire retrorockets to impact in next
recovery area.

3-150

MC 63-4

RECOVERYAREA--this column will contain two numbers:

00 -- Recovery Area A
01 -- Recovery Area B
02 -- Recovery Area C
03 -- Recovery Area D
04 -- Recovery Area E
10 -- Recovery Area 1A
11 -- Recovery Area 1B

TIME
r--R

I.A.
O.C.

v/v
r

-- Time in seconds after lfftoff:

-- Height in miles

-- Flightpath angle in degrees
-- Inclination angle
-- Orbit capability

-- Ratio of velocity to velocity required

Examples of values transmitted to Cape Canaveral during the orbit phase,
logged on the log tape and subsequently printed by MXHSPR, are shown below.
A glossary of unexplained column headings follows the examples.

ORBIT PHASE -- WALL MAP

LATITUDE LONGITUDE LATITUDE LONGITUDE

(P. P.) (PP) (R. F. in 30 sec) (RF in 30 sec) TIME

30.85043907 --69.85337257 --.03910065 --.17595291 5 30

30.92863846 --69.50146675 --.03910065 --.17595291 5 36

31.00684166 --69.14955902 --.03910065 --.17595291 5 42

31.08504295 --68.79765511 --.03910065 --.17595291 5 48

ORBIT PHASE -- DIGITAL DISPLAYS

ORBIT

GTRS NO. GMTLC LATITUDE LONGITUDE r--R

04 28 02 01 20 02 19.36 --065.0 092.9

04 27 50 01 20 02 19.36 --065.0 092.9

04 27 36 01 20 02 19.36 --065.0 092.9

04 27 26 01 20 02 19.36 --065.0 092.9

04 27 14 01 20 02 19.36 --065.0 092.9

3-151

MC 63-4

ORBIT PHASE -- DIGITAL DISPLAYS

APOGEE HT. I. Ao ORBIT CAP. TIME VELOCITY

124.9 32.4 00 5 36 25660

124.8 32.4 00 5 48 25660

124.8 32.4 00 6 2 25660

124.7 32.4 00 6 12 25660

124.7 32.4 00 6 24 25660

GMTRC ECTRC GMTRC EPO ECTRC EPO GMTRC-EOM

15 33 21 O0 19 36 16 41 38 01 27 53 19 46 39

15 33 21 O0 19 36 16 41 38 01 27 53 19 46 39

15 33 21 O0 19 36 16 41 38 O1 27 53 19 46 39

15 33 21 O0 19 36 16 41 38 01 27 53 19 46 39

15 33 21 O0 19 36 16 41 38 O1 27 53 19 46 39

ECTRC-EOM GMTRS ICTRC RECOVERY AREA TIME

04 32 54 19 47 23 O0 --01 16 1 1 6 6

04 32 54 19 47 23 O0 --01 16 1 1 6 18

04 32 54 19 47 23 O0 --01 16 1 1 6 30

04 32 54 19 47 23 O0 --01 16 1 1 6 42

04 32 54 19 47 23 O0 --01 16 1 1 6 54

ORBIT PHASE -- PLOTBOARD 1

ALTITUDE VELOCITY TIME

92.86412510 25659.82404041 5 30

92.86412510 25659.82404041 5 36

92.86412510 25659.82404041 5 42

92.86412510 25659.82404041 5 48

3-152

MC 63-4

ORBIT PHASE-- PLOTBOARD 2
m

r -- R TIME ALTITUDE TIME

109.09090826 334.31069946 93.25513181 5 30

109.09090826 334.31069946 93.25513181 5 36

109.09090826 334.31069946 93.25513181 5 42

109.09090826 351.90599918 93.25513181 5 48

109.09090826 351.90599918 93.25513181 5 55

ORBIT PHASE- PLOTBOARD 3

P ERIG E E

LONGITUDE ELAPSED TIME ECCENTRICITY TIME

--92.02346039 334.31069946 .00464514 5 30

--92.02346039 334.31069946 .00464514 5 36

--92.02346039 334.31069946 .00436363 5 42

--91.31964874 351.90599918 .00436363 5 48

--91.31964874 351.90599918 .00436363 5 55

ORBIT PHASE -- PLOTBOARD 4

LATITUDE LONGITUDE LATITUDE LONGITUDE

(P. P.) (P. P.) (I. P.) (I. P.) TIME

30.86216545 --69.98544821 11.99999809 --45.00000191 5 30

30.95600700 --69.54545593 11.99999809 --45.00000191 5 36

31.02638817 --69.10557365 11.99999809 --45.00000191 5 42

31.09676933 --68.66569138 11.99999809 --45.00000191 5 48

31.19061089 --68.13783073 11.99999809 --45.00000191 5 55

A -- semimajor axis of orbit of spacecraft
R -- nominal radius of earth
Time -- time is shown in seconds or minutes and seconds since liftoff

Perigee -- lowest point of orbit
Eccentricity -- eccentricity of orbital ellipse
Long. R. F. -- longitude if retrofire in 30 seconds

GTRS -- elapsed time to retro setting
GMTLC -- GMT of landing (computed)

(r--R) -- altitude

3-153

MC 63-4

Apogee -- farthest point of orbit
GMTRC -- Greenwich Mean Time of retrofire computed
ECTRC -- elapsed spacecraft time of retrofire computed

ECTRC--EPO -- elapsed spacecraft time of retrofire computed, end present
orbit

GMTRC--EOM -- GMTRC at end of mission

GMTRS --Greenwich Mean Time of retro setting
ICTRC -- incremental time of retrofire computed

3.16.3 Method

MXHSPR reads all data from the log tape, separates the high-speed output
from the other data, and writes this on two auxiliary tapes thereby producing
two identical high-speed data tapes. A search for the time of liftoff is made
during the generation of these tapes. If no liftoff signal is found, MXHSPR as-
sumes a liftoff time of zero. (There is no liftoff for log tapes produced by re-
starts or runs based on an orbit r, v.) The program then reads data from one
of the tapes, unpacks the data pertaining to one of the displays, scales this data
accordingly, and writes it on the output tape. When the logical end of the data
tape is reached, the program rewinds the tape and immediately begins proces-
sing data for the next display by using the other data tape. This procedure con-

tinues until the data for each of the displays has been recorded on the output
tape.

MXHSPR uses the Share program SE9OU2 to write data on the output tape.

3.16.4

a)

b)

c)

d)

e)

Usage: Operator's Procedures

Ready B6 with a log tape.

Ready A5, B7, C6 with blank tapes.

Ready card reader with MXHSPR absolute row binary deck.

Press CLEAR and LOAD CARDS.

Print A5 under program control.

3-154

MC 63-4

NO

READ ONE

RECORD

FROM B6

OF FILE BEEN

REACHED ON

B6

_NO
PLACE ALL

HIGH SPEED

DATA SUB

CHANNEL 3-

IN OUTPUT

BUFFER

YES

DOES THIS

RECORD CON-

TAIN A GMT

OF LIFTOFF

YES

STORE

GMT

OF LIFTOFF

(,SOUTPUTBUFFER

FILLED

YES

WRITE

OUTPUT BUFFER
ONTO TAPES

B7 AND C6

WRITE END OF

FILES ON B7

AND C6.

REWIND TAPES

SELECT DISPLAY

UPDATE THE

DISPLAY SELECTOR

TO READY

THE NEXT

DISPLAY

LAST DISPLAY YES
BEEN

PROCESSED

SELECT B7
OR C6. UPDATE
THE CHANNEL

SELECTOR

READ 2

RECORDS

OF DATA

% HAS AN
END OF FILE

BEEN READ

] (No

FIGURE 3-13. MXHSPR PROGRAM FLOW CHART (Sheet1 of 2)

3-155

MC 63--4

DETERMINE PHASE
BUT DO NOT

PRINT PHASE TITLE

NO CHANGE

r

 DOESTIMEIN
ECORDS EQUAL) NO

MT OF LIFTOFFJ

YES

SEARCH FOR ODD
AND EVEN FRAMES
TO COMPOSE 1 BLOCK

t i

COMPOSE LOG TIME
FOR PRINTING:
HRS MINS SECS

TEST FOR
PHASE CHANGE

DETERMINE WHICH
DISPLAY IS TO

BE PROCESSED.

UNPACK, CONVERT
SCALE AND PRINT

DISPLAY MESSAGES

I

READ TWO MORE
RECORDS FROM

SELECTED TAPE
i,

T

CHANGE

DETERMINE PHASE
AND PRINT

PHASE TITLE

DIFFERENT PROCESSOR
FOR EACH DISPLAY:

DIGITAL DISPLAY
STRIP CHART

WALL MAP
PLOTBOARD1
PLOTBOARD 2
PLOTBOARD 3
PLOTBOARD4

FIGURE 3-13. MXHSPR PROGRAM FLOW CHART (Sheet 2 o[2)

3-156

MC 63-4

3.17 LOG TAPE PRINTER PROGRAM(MXPRLG)

MXPRLG extracts key-selected input and output teletype data from the log
tape for off-line printing in a specified format.

The flow chart for MXPRLG is shownin Figure 3-14.

3.17.1 Input Requirements

Input to MXPRLG are log tapes of Mercury missions, including simulated
runs. As needed, the tapes for a mission are mounted on tape units A6 and B6
as follows: the first reel, third, fifth, etc. use B6; the second reel, fourth,
sixth etc. use A6. MXPRLG requires that the teletype subchannel(s) number

be entered via Entry keys at the beginning of the run. If more than one log tape
is to be processed, the number of tapes must also be entered via the keys.

3.17.2 Output Requirements

The final printed output will be on tape unit A2, with tape units B4 and B5
used as intermediate outputs. Low-speed messages are printed in BCD. The

output tape A2 contains the selected messages in the format listed in Table 3-2.

In the input format example, Table 3-2, data was received through DCC
subchannel 29. Each line following subchannel identification indicates a low-

speed radar message in the format, as defined by the specifications. Each
message contains the station identification code, the type of radar used (Verlort
or AN/FPS-16), the time, range, azimuth, and elevation of the spacecraft
position and whether the data is valid or invalid.

The first line of the output example, Table 3-2, contains the heading words
IDENTIFICATION TERMINAL, and DATA IS TRANSMITTED. Immediately
under the word IDENTIFICATION is a number corresponding to the DCC sub-

channel through which the data passed and was subsequently logged.

In the output format example, the data was transmitted through DCC sub-
channel 11. The left column contains the communications switch letters

(YNYN); the GMT in hours, minutes, and seconds; the terminal station letters;
and the type of transmission (AQ meaning acquisition). Following the type of
transmission is the message content consisting of four "look" angles of time,

range, azimuth and elevation.

3-157

MC 63-4

Station Radar

Number Type

04 2

O4 2

04 2

04 2

04 2

Table 3-2

GODDARD TELETYPE INPUT

Validity Hours Minutes Seconds Azimuth

2 00 14 42 313663

2 00 14 48 313622

2 00 14 54 313621

2 00 15 00 313537

2 00 15 06 313526

GODDARD TELETYPE OUTPUT

Elevation

001671

002100

002413

002642

003106

Range

0432621

042124_

0407714

037635E

0365024

IDENTIFICATION

YNYN
114800Z

CY1

AQ

11

11

11

11

114800Z

CY1

11

TERMINAL

54 31 1555 287.5 .8

55 58 873 286.1 9.6

57 04 382 280.8 30.4

57 58 237 134.1 58.8

DATA IS TRANSMITTED

3-158

MC 63-4

3.17.3 Method

The numbers of the subchannels and the total number of input tapes must be
entered using the Entry keys. MXPRLG searches the log tapes for these sub-
channels and writes the data on the intermediate tapes B4 and B5. When the
log tapes have been completely read, the B4 and B5 tapes are used as input and

converted to the final printed output. Completed messages are written on A2.

MXPRLG uses the general purpose print program SE9OU2 and the teletype
decoder program TYDC.

3.17.4

a)

b)

Usage

Operators Procedure:

1) Ready log tapes on A6 and B6

2) Ready blank tapes on B4 and B5 for intermediate output

3) Ready blank tape on A2 for final output

4) Enter number of log tapes in keys 3 through 8, right-justified, and
all subchannel numbers in keys 10 through 32

5) Press CLEAR, then LOAD TAPE buttons

The machine will come to a halt (7_) and will print the num-
ber of log tapes. If correct, pres_ START to continue. If
incorrect, check console keys and begin again.

6) MXPRLG will now run until all subchannels have been processed

Error Conditions--if an error occurs in using the subroutine SE9OU2,

the program transfers to a halt with 764008 in the address. In case of

error in subroutine TYDC, MXPRLG prints on-line the message
ERROR RETURN MESSAGE TOO LONG and continues to print out off-
line that part of the message that has been preserved.

3-159

MC 63-4

GET NUMBER
OF LOG TAPES

AND SUBCHANNEL
NUMBERS FROM
CONSOLE KEYS

(PRINT MESSAGE)
XX INPUT TAPES,

IF RIGHT
- PRESS START -

HALT (7)

1
SETUP

TABLE OF
SUBCHANNELS

TO PROCESS

READ
LOG RECORD

t NO

WAS READ

FROM A LOG TAPE _ LOG /'_

OR INTERMEDIATE]_zA]

TAPE ._ v

INT. TAPE
MOVE

LOG MESSAGE
TO TELETYPE

DECODE WORK
AREA

ira-

(TELETYPE
DECODE WORK

AREA FULL

YES

TYDC
CONVERT

TELETYPE
MESSAGES TO

BCD

1
WRITE

TO OUTPUT
TAPE

FIGURE 3-14. MXPRLG PROGRAM FLOW CHART (Sheet 1 of 2)

3-160

MC 63-4

SWITCH

READ INSTRUCTION
TO NEXT

TAPE UNIT

LOG

II TAPE

ANY MORE
LOG TAPES

WASEOP
ROMALOGTAPE
R INTERMEDIATE J

TAPE J

REWIND
INTERMEDIATE

TAPES
SWITCH READ

INSTRUCTION

IN TE RM. _ QTAPE

(ANY MORE

SUBCHANNELS
TO PROCESS

YES

THIS TAPE

SWITCH READ
ADDRESS

?
CHECK

FIRST WORD OF
/

7-WORD MESSAGE]

OR SUBCHANNEL J

I GOOD
ONE

MOVE J

17-WORD MESSAGE

TO ODD OR EVEN
BLOCK

NOT _NEEDED

(WRITE

IS EITHER TO ODD
ODD OR EVEN OR EVEN
BLOCK FULL INTERMEDIATE

TAPE

ANY MORE

17-WORD

MESSAGES

FIGURE 3.14. MXPRLG PROGRAM FLOW CHART (Sheet 2 of 2)

3-161

MC 63-4

3.18 LOG TAPE PLOTTING PROGRAM (MXHSPL)

MXHSPL displays on the Goddard plotboard the data from the log tape used
during a previous Mercury Programming System run to drive plotboards 1
through 4 and the wall map at the MCC.

The flow chart for the MXHSPL program is shown in Figure 3-15.

3.18.1 Input Requirements

The only input to MXHSPL is the log tape of a Mercury mission--simulated
or unsimulated--on tape unit B6. (The log tape is described in subsection 5.1.1.)
The plotboard number is entered in the console keys (the wall map is entered
as 5).

3.18.2 Output Requirements

A plot is made for each flight phase on the X-Y plotter of those parts of the
high-speed output messages sent over DCC subchannel 3 which refer to Cape
plotboards or the wall map.

As each point is plotted, an on-line print indicates plotboard number and
flight phase. After a complete phase has been plotted, the program stops and
prints on-line, END OF PHASE. CHANGE PAPER. HIT START.

3.18.3 Method

MXHSPL searches the log tape for high-speed output messages transmitted
on subchannel 3 of the Data Communications Channel. When a complete mes-

sage of 408 bits is found, the DCC is enabled and the bits referring to the dis-
play designated by the number in the console keys are packed in an output block
to be sent to the DCC. A control word, which has a minus sign indicating how
many arms of the plotter and how many pens per arm are to be used, is also
packed in the DCC output block.

The message is transmitted through DCC subchannel 4 and the DCC is dis-
abled. The remaining messages are located and processed until a phase change
is found. The program then halts until the computer operator presses START.
The program then processes the data for the next phase.

MXHSPL incorporates the Share program SE9OU2 as an internal subroutine
for printing.

3-163

MC 63-4

b}

Usage

Operator's Procedures:

1} Ready the plotter and standard SOS system tapes

2} Ready B6 with the log tape

3} Ready the on-line printer

4} Ready the card reader with the MXHSPL deck

5} Enter the plotboard number in the console keys (enter wall map as
5}

6} Press CLEAR and LOAD TAPE

7} Program stops after each flight phase is plotted. To continue,
press START after changing plotboard paper

Error Conditions--an error return from the subroutine SE9OU2 results

in a program halt.

3-164

MC 63-4

DEBE_ ,

READ OHE RECORD
FROM B6

f
INITIALIZE

READ ONE RECORD

FROM B6

ND-OF-FILE REA

DETES f NO

SAVE
SUBCHANNEL

NUMBER AND CODE

DEPHA

STORE PREFIX,IN
WORD 5

OF THIS GROUP

DESC f

SUBCHANNEL
CONSOLE

DEFTT t

T .TIME THROUG NO

YES

DEN r

STORE PHASE N

IN PHASE N- 1

J i

!

STORE 1 IN DEFII

NO

AS PHASE CHANGED_

YES

J PRINT :"END OF__PHASE"

DELl _ _

I TORE MESSAGE

DEWC t

_ TESTFOR _YES

HALT-
TRANSFER WHEN
START PRESSED

I

INITIALIZE

MESSAGE BLOCK

FIGURE 3-15. MXHSPL PROGRAM FLOW CHART (Sheet 1 of 2)

3-165

MC 63-4

1ST

TIME

TH ROUGH

DEFTE t YES

I SET
DECT -- 1

L
ENABLE

ENABLE WAIT FOR TRAP

DETPB I _

STORE BITS FOR

SELECTED

PLOTBOARD

DESSM

SET6TH

WORD MINUS

f

TRANSMIT TO DCC

f

DISABLE

DEPR f

PRINT PHASE AND

PLOTBOARD

NUMBER

DEGTS

IS THE LAST
GROUP OF TEN

i

YES

MOVE RECORD 2

TO RECORD1

NO

®
I READ IN ANEW RECORD

_ND.OF-FILE READ) NO

YES

REWIND TAPES AND

HALT-TRANSFER

ON START

UPDATE

FIGURE 3-15. MXHSPL PROGRAM FLOW CHART ($kee¢ 2 o[2)

3-166

MC 63-4

SEC TION 4

SUPPORTING PROGRAMS

Mercury System supporting programs perform all functions necessary for
object program execution that cannot be performed during the mission. Basi-
cally, supportingprograms produce and debug Mercury system tapes. Since they
are not part of the real-time tracking system, they are used either before or
after each real-time operation.

Message and station characteristics tapes are produced by the MXWMOT,
UOSTCH, and UOSTUP programs; the B4 utility tape, by the WRTB4T and

HOMER programs. This utility tape contains the writer, loader, and dump
programs. An input tape for the SOS compiler is prepared by MXMRGE.
SOS output is handled by writer and loader programs MXSTWI, MXDEFN,
MXLOAD, and SETORG which produce the absolute Mercury system tapes
and load them into the machine.

The MTTEST transfer test processor serves as a debugging aid, and is
generally run in simulated real-time.

A symbolic dump of core storage is accommodated with the programs
SGENDX, ISODMP, and CORING used in conjunction with SOS.

4-1

MC 63-4

4.1 MONITOR MERGE PROGRAM (MXMRGE)

In normal SOS, a compiled squoze deck becomes a job deck with the ad-

dition of three or more symbolic (Hollerith coded) control cards--the first card
added is always a JOB card, and the last, a PAUSE card. This job deck may
be entered into the computer for execution indirectly, via tape, or directly,
via the on-line card reader. Further modifications in the program can be
made with symbolic cards in combination with the original squoze deck.

The squoze deck of a complex system may become too large to handle con-
veniently. For this reason the squoze output from the Mercury SOS compilation
was put on tape rather than cards. With MXMRGE, the symbolic cards are

merged into this "squoze deck on tape" to produce a job tape as output. (The
job tape is, in fact, identical to the tape produced when a job deck--squoze
deck plus symbolic control--is written on tape off-line to be used as input to
the computer.)

A general flow chart and a detailed flow chart for the MXMRGE program
are shown in Figures 4-1 and 4-2.

4.1.1 Input Requirements

Input to MXMRGE consists of:

a)

b)

The squoze deck written in column binary form on tape B8. This
squoze tape must contain at least one record preceding and one rec-
ord following a blank record (a minimum total of three records) and
an end-of-file mark following the last record.

Symbolic control cards read into the computer either directly, from
the on-line reader, or indirectly, from tape A5.

4.1.2 Output Requirements

The output from this program consists of one or more merged jobs written
on tape A3. For each job completed, the computer prints out the number of
squoze records read from B8 and the number of modification cards (MOD to
ENDMOD, exclusive) merged, with the message: GOOD MORNING. RESET
ENTRY KEYS FOR FIRST JOB. THEN PRESS START.

4.1.3

a)

Method

Symbolic cards are read by the RCD subroutine (internal to MXMRGE)
which converts the cards to BCD and stores them in 12 consecutive

4-3

MC 63-4

b)

c)

d)

core storage cells. The proper leading address is placed in the

thirteenth and fourteenth cells; the 14-cell block is written on tape
A3 in BCD.

With the exception of the blank record, the records of the squoze
tape are read in one by one; each record is placed in consecutive
cells of a 26-cell block, the unused cells set to zero. The proper
leading address is placed in the twenty-seventh and twenty-eighth
cells, and the 28-cell block is written on tape A3 in BCD.

The blank record of the squoze tape is converted to BCD by placing
Hollerith blanks in 12 consecutive core locations; the proper leading
address is placed in the thirteenth and fourteenth cells, and the 14-
cell block is written on tape A3 in BCD.

When a PAUSE card is sensed by the card reader (or an end-of-file
mark if tape A5 is used for the symbolic control card), an end-of-file
mark is written on tape A3.

4.1.4

a)

Usage

Operator Procedures--usually a MXMRGE run immediately precedes

an SOS run to process the merged jobs. Both phases require the

standard SOS tapes. The operator must:

1) Ready the following tapes:

A1

A2

A3

B1

B2

B8

For MXMRGE After MXMRGE, for processing*

SOS tape

(Not used)

Pool tape; used by
MXMRGE to write

the job tape

Pool tape

Pool tape

Mercury System
tape

SOS tape

BCD output

Job tape from MXMRGE

Pool tape

Pool tape

(Not used)

*Other tapes may be needed by the program being processed.

4-4

MC 63-4

2) Ready the card reader with:

WDBL2 Two cards
MXMRGE 40 cards

Job Decks Not needed if they are being read from tape A5.

3) Set console entry keys S, 1, 2, 3, 4 and 5 as follows:

ENK-S up Control cards read from A5.
ENK-S down Control cards read from card reader.

ENK-1 up B8 is not rewound after each input job.

ENK-1 down B8 is rewound after each input job.

ENK-2 up JOB card appears on squoze input.

ENK-2 down No JOB card on squoze input. *

ENK-3 up A5 is not rewound at end of MXMRGE.
ENK-3 down A5 is rewound at end of MXMRGE.

(Note: if ENK-S is up, ENK-3 has no effect and MXMRGE re-
winds A5 before and after all merging.)

ENK-4 up One end-of-file mark between each squoze deck. *
ENK-4 down Two end-of-file marks between each squoze deck.

ENK-5 down Job deck and squoze deck with same characters
in first card, columns 16 and 17, are merged.

ENK-5 up No job select; job deck merged with next squoze
on tape.

4) Ready the on-line printer; press CLEAR and LOAD CARDS.

5) Six lines are normally printed for each job, one line at the start
of the job and five lines at the end of the job:

Line 1: JOB card

Line 2:

Line 3:

ONE JOB HAS BEEN WRITTEN ON A3. THE SQUOZE
AND MOD COUNTS WILL FOLLOW.

THE FOLLOWING 36 BIT BIN. NO. IS THE NO. OF THE

SQUOZE RECORDS READ FROM B8.

*Applies to an obsolete version of SOS. ENK-2 and ENK-4 should always be up.

4-5

MC 63-4

Line 4: (36-bit number)

Line 5: THE FOLLOWING 36 BIT BIN. NO. IS THE NO. OF

MOD CARDS READ MOD TO ENDMOD.

Line 6: (36-bit number)

b) Error Conditions--there are six possible error stops; each prints a

specific line on the printer:

1) REDUNDANCY ON CH. A. PRESS START IF COMPLETION OF
MXMRGE DESIRED.

2) REDUNDANCY ON CH. B. PRESS START IF COMPLETION OF
MXMRGE DESIRED.

3) REDUNDANCY ON CH. A. MXMRGE CANNOT COMPLETE
MERGE.

4) ILLEGAL HOLLERITH CHARACTER DETECTED BY RCD SUB-
ROUTINE.

5) FIRST CARD FOR JOB NOT JOB CARD--ERROR IN HOLLERITH
CONTROL DECK.

6) FALSE END-OF-FILE. INCORRECT SETUP OF HOLLERITH
CONTROL DECK.

The first two errors can be bypassed and MXMRGE completed. The
last four errors cannot be bypassed. If the error occurred on the
first job, correct the condition, if possible, and start over. If the
error occurred after the first job, either rertm all the jobs or remove
A3 and start over with the uncompleted jobs.

c) Example of MXMRGE Usage--OUTPUT is the result of merging IN-
PUT 1 and INPUT 2 and is written on A3.

INPUT 1 INPUT 2 OUTPUT

List Job Deck

Squoze Tape JOB

LS
Blank card

PAUSE

JOB (BCD)

LS (BCD)

Squoze deck preceding blank of squoze (CB)

Blank card of squoze deck (BCD)

Squoze deck following blank of squoze (CB)

Blank card (BCD)

PAUSE (BCD)
End-of-file mark

4-6

INPUT 1

Squoze Tape

MC 63-4

INPUT 2 OUTPUT

Execution Job Deck

JOB
LG
MOD

*Modification cards
ENDMOD

Blank card

*Data sentence deck
GO

PAUSE

JOB (BCD)

Squoze deck preceding blank of squoze (CB)
MOD (BCD)

Modification cards (BCD)--present only if
placed in card reader or on A5.

ENDMOD (BCD)
Blank of squoze deck (BCD)
Squoze deck following blank of squoze (CB)

Blank card (BCD)
Data sentence decks (BCD)--present only
if placed in card reader or on A5
GO (BCD)

PAUSE (BCD)
End-of-file mark

D Squoze Tape

List Squoze Deck

JOB
LG
MOD

*Modification cards
ENDMOD

Blank card
LIST

Blank card
PAUSE

JOB (BCD)

LG (BCD)

Squoze deck preceding blank of squoze

MOD (BCD)

Modification cards (BCD)--present ifplaced
in card reader or on A5

ENDMOD (BCD)
Blank of squoze (BCD)
Squoze deck following blank of squoze (CB)

Blank card (BCD)
LIST (BCD)
Blank card (BCD)
PAUSE (BCD)
End-of-file mark

Squoze Tape JOB
PS
MOD

Punch New Squoze Deck

JOB (BCD)

PS (BCD)
Squoze deck preceding blank of squoze (CB)

*ff needed

4-7

MC 63-4

INPUT 1

Squoze Tape

*if needed

d)

INPUT 2 OUTPUT

Punch New Squoze Deck--Continued

*Modification cards
ENDMOD

Blank card
PAUSE

MOD (BCD)
Modification cards (BCD}
ENDMOD (BCD)
Blank for squoze (BCD}
Squoze deck following blank of squoze (CB)

Blank card (BCD)
PAUSE (BCD)
End-of-file mark

Punch Absolute Binary

JOB
PA
MOD

*Modification cards
ENDMOD

Blank card

PAUSE

JOB (BCD)
PA (BCD)
Squoze deck preceding blank of squoze (CB)

MOB (BCD)

Modification cards (BCD)--present if

placed in card reader or on A5

ENDMOD (BCD)
Blank of squoze deck (BCD)
Squoze deck following blank of squoze (CB)
Blank card (BCD)
PAUSE (BCD)
End-of-file mark

A FIELD card may be placed at the beginning of a MXMERGE
deck. The address of the FIELD card specifies that all mods with alter

numbers lying in the range of the field will be automatically inserted in
each mod packet. If the job is loaded on-line, a blank A5 is required.

Column 72 of the job card must contain the job number (1, 2, ..., 9).
Example:
Example: FIELD 1,500 Column 72

JOB ONE 1
LG
MOD

ALTER 315,317
C LA SMTNG
ENDMOD
GO
JOB TWO 2

4-8

MC 63-4

FIELD

LG
MOD
ALTER
ADD
ALTER

STL
ENDMOD
GO
PAUSE

1,500

600
OTHR

15
LSWR

Column 72

This MXMRGE deck effectively becomes:

JOB ONE
LG
MOD

ALTER 315,317
C LA SMTNG
ALTER 15
STL LSWR
ENDMOD
GO
JOB TWO
LG
MOD

ALTER 315,317
C LA SMTNG
ALTER 15
STL LSWR

ALTER 600
ADD OTHR
ENDMOD
GO
PAUSE

e) A PAUSE card is no longer required between successive jobs.

4-9

MC 63-4

END-OF-FILE

J RETURN

REWlND SPECIFIEDJ

TAPES. TRANS-

PERC%_ROLTOJ

WRITE THE

SECOND LAST

CARD READ ON

OUTPUT TAPE A3

I

READ IN FIRST J

CARD FROM CARD I

_EADER (OR AS) WITH I

RCD SUBROUTINE J

l WASRETURN\
FROMSUBRDUT,NE ERRORRETURN

AN EOF, ERROR /
R NORMAL

RETUR/NI FOR FIELD

I NORMAL

OUTPUT TAPE A3

AND READ THE
NEXT CARD WITH

RED SUBROUTINI_

SECOND CARD

AN "LS" (LIST YES
SQUOZE) CARD?

=--_ NO

WITH RCD J

SUBROUTINE I

t

(,STH,S)
NO CARD A "MOD"

(MODI FICATION)
CARD?

YES

WRITE THE 1

SECOND LAST I
CARD READ ON /

OUTPUT TAPE A3J

I *R,TEPREPACEI
SQUOZE CARDS I
FROM TAPE B8 I

ON OUTPUT TAPEI

wR,TEMOO,EI_T,_I
/ CARDS ("MOD" I
_TO °'ENDMOD °') ONI

J OUTPUT TAPE A3 l

L

FOR FIELD RUN, SAVE

COMMON MODSIN

MEMORY.

RUN, OUTPUT J
COMMON MODS.

WRITE THE"LS"

ON THE OUTPUT

TAPE A3

WRITE PREFACE

SQUOZE CARDS

ON OUTPUT
TAPE A3

i
HALT-

TRANSFER
CONTROL WHEN

OPERATOR PRESSES
START BUTTON

THIS MERGE JOB I

IS COMPLETED.
CHECK TO SEE

I F MORE
REMAIN

I WRITE REMAINDER
OF CARD INPUT

FROM CARD READER
(OR A5) ON OUTPU]

TAPE A3

t
WRITE REMAINDER

OF SQUOZE
INPUT FROM B8

ON OUTPUT

TAPE A3

FIGURE 4-1. MXMRGE GENERAL FLOW DIAGRAM

4-10

|
MC 63-4

REWIND 1
TAPES

A3 & B8

t

IS ENTRY /YES

KEY S

UP?

_].o

SET i

INITIAL

CONDITIONS

I READ 1

1ST CARD WITH

RCD SUBROUTINE

t

EOF,ERROROR\
EOF NORMAL _ ERROR RETURN _

RETURN FROM /

RCD SUBROUTINe/

NORMAL RETURN

KEY 2 YES

UP?

I°
'STHE\ /,STHE'"CARDREADA_'_ CARDA

"JDB"CARD:J\F,E.OCARD
YES)ES_

I PUT COMMON

MODS IN

MEMORY

r

L.A. IS READ "LEADING ADDRESS'"

BCD : CB IS READ "BINARY-CODED

DECIMAL CARD FOLLOWED BY

COLUMN BINARY CARD"

THE LEADING ADDRESS iN EACH

TAPE RECORD SUPPLIES THE READ-

SELECT MODE FOR SOS WHEN

A SQUOZE DECK IS UNDER

SOS CONTROL

t

I REWINDiTAPE

A5

I

t
I PRINTO°TI
I ON*LINE THE I
I "JOB CARD" I

IRECOROFROME_j

,J

NO, ERROR

PRINT MESSAGE 2

ON-LINE:
"FIRST CARD FOR

JOB NOT JOB

CARD- ERROR

IN HOLLERITH

CONTROL DECK"

PROGRAM HALTS

.... OPERATOR?

PRESSES START |BUTTON •

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 1 o[6)

4-Ii

MC 63-4

I SET L.A. TO

BCD:BCD
WRITE "JOB"

CARD ON TAPE
IN BCD

I READ 2ND CARD

WITH

RCD ,SUBROUTINE

CNO IS CARD
NUMBER

M3 I _

READ CARD#]

CNO WITH
RCD SUBROUTINE

I

EO[, \ f EOP.\ SET

CNO TO

ERROR RETURN _ERROR RETURNI ERROR RETURN _ "_'_ CNO+ 1

OR NORMAL / l • OR NORMAL) l

RETURN/ ,J,,, \ RETURN,/ _ i

INORMAL (6A/ INORMAL (6B) I SETL.A.OPI RETURN "--/ I RETURN '_j cARD"(cN°'',wRITET°BCD=BCDcAD.
(CNO-1) ON TAPE

IN BCD

A "MOO" NO #

CARDIS 2ND CARD

AN "LS" (LIST NO

SQUOZE) CARD

YES

SET L.A. OF LS

TO BCD:BCD

WRITE LS ON
TAPE IN BCD

l _

I SETa= a 1

I

I YES

SET L.A. OP

CARD (CNO-1)
TO BCD:BCD

WRITE CARD
(CNO-1) ON

TAPE IN BCD

I READ 1ST

RECORD PROM

SQUOZE TAPE

t

I STEP

B8
COUNTER

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART ('Sheet 2 o[6)

4-12

MC 63-4

J SET L.A. OF

"MOD" CARD

TO BCD:BCD

READ ANOTHER

RECORD FROM
SQUOZE TAPE

WRITE OUT
COMMON

MODS.

M8
WRITE MOD

CARD ON

TAPE IN
BCD

M9 |

MODIFICATION
CARD WITH

BCD SUBROUTINE

STEP
CH. A

COUNTERSTEP

B8

COUNTER

IS THE /

RECORD NO

A BLANK
RECORD

YES

SET L.A. OF

NEXT-TO-LAST

RECORD READ
FROM SQUOZE

TAPE TO CB:BCD

t
WRITE NEXT-TO-

LAST RECORD
READ FROM

SQUOZE ON
TAPE BINARY

t
PUT BCD CONFIG-

URATION IN BLANK
J RECORD. SET L.A.

OF BLANK RECORD

J TO BCD:CB

WRITE
NEXT-TO-LAST
RECORD READ
FROMSQUOZE

TAPE

SET L.A. OF
NEXT-TO-LAST

RECORD READ

FROMSQUOZE
TO CB:CB

I

ERROR

ETURN

I ,,MOD,,CAR D

BECOMES LAST

CARD READ

REOF, NORMAL, '_

OR ERROR Eo_9.L I

RETURNFROM/ I
CDSOBROUT,NE/ j.

CARD AN NO
"ENDMOD"

CARD

t YES

WRITE "ENDMOD"
ON TAPE

IN BCD

Q M10 _

I READ 1ST RECORD r

AFTER BLANK FROM
SQUOZE TAPE;

WRITE BLANK RE-
CORD FROM SQUOZE

ON TAPE: IN R_I_

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 3 o[6)

/
J

4-13

MC 63-4

READ ANOTHER

RECORD FROM

SQUOZE TAPE

SET L.A. OF J

NEXT-TO-LAST J
RECORD READ J

FROM SQUOZE TAPE J
TO CIB : CB J

END-OF-FILE\
ON _--

SQUOZE TAPE?/

_ YES

SET L.A. OF LAST I

RECORD READ
FROM SQUOZE

TO CB : BCD

M13 =-i

READ NEXT

CARD WITH

RCD SUBROUTINE

R ERROR RETURN _EOF

FROM RCD

,.BROUT'"E/-1
(6A) J. NORMAL 6B |

] RETURN

MODIFICATION

CARD READ TO

BCD : BCD

/ ,SCARD\
(READA)_ES

R8 f. NO

I WRITE CARD

ON TAPE

IN BCD

I

WRITE "PAUSE"

CARD ON

TAPE IN BCD

r
PRINT OUT ON-LINE

THE B8 COUNT

AND THE

MODi FICATION COUN1

t

ENTRY KEY 1

UP

YES

REWIND

B8

IS 4_
ENTRY KEY

UP

| NO
SKIP END-OF-

FILE ON B8.

TURN OFF
END-OF-FILE

INDICATOR

NO

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 4 o[6)

4-14

MC 63--4

R5
WRITE END-OF-

FILE ON A3

REWIND A3

/ REOU.DA.CY\
C.A.Np__O.C.ANNELAI-_ "_°

i \ORCNANNELB/ I
t IN° t

PRINT MESSAGE 4 J PRINT MESSAGE 5
ON-LINE: J ON-LiNE:

"REDUNDANCY ON J "REDUNDANCY ON

CH.A. PRESS l CH.B. PRESS
START IFSTART IF

COMPLETION OF

MXMRGE DESIRED."

PROGRAM HALTS

OPERATORI I

I PREBSS_I'_I'(_I_IARTJ.... J

R7 l r

REWIND SOS TAPES:

A1, A2, A3, B1, B2

REWIND MERGE

TAPE: B8

COMPLETION OF

MXMRGE DESIRED"

PROGRAM HALTS

J OPERATOR I

o,,_ PRESSES STARTJ

/ BUTTON I

(,sENTRY KEY S

UP

YES

REWIND

A5

Is)yEsENTRY KEY 3

UP

| NO

REWIND

A5

PRINT MESSAGE 7 '

ON-LINE:
"RESET ENTRY

KEYS FOR FIRST
JOB, THEN

PRESS START"

PROGRAM HALTS

I OPERATORI
• ---,,,-o,l PRESSES STARTI

J BUTTON

J SIMULATE J

"LOAD TAPE" J
INSTRUCTIONS TO J

GIVE CONTROL J
TO SOS I

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 5 of 6)

4-15

MC 63-4

?
(,s)ENTRY KEY S

UP

YES

PRINT MESSAGE 6
ON-LINE:

"REDUNDANCY ON
CH.A. MXMRGE

CANNOT COMPLETE
MERGE"

PROGRAM HALTS

NO

PRINT MESSAGE 1
ON-LINE:

"ILLEGAL HOLLERITH
CHARACTER

DETECTED BY
RCD SUBROUTINE"

PROGRAM HALTS

PRINT MESSAGE 3
ON-LINE:

"FALSE END-OF-FILE
INCORRECT SET UP

OF HOLLERITH
CONTROL DECK"

PROGRAM HALTS

J OPERATOR J
leooJ PRESSES START| eooo

I BUTTON I

ERROR RETURN
FROM RCD SUBROUTINE

J OPERATOR
PRE_ESSTART

BUTTON
O00QOO0

END-OF-FILE RETURN
FROM RCD SUBROUTINE

FIGURE 4-2. MXMRGE PROGRAM FLOW CHART (Sheet 6 of 6)

4-16

I • _ R I

MC 63-4

4.2 MERCURY SYSTEM TAPE WRITER PROGRAM (MXSTWl)

MXSTWI writes in absolute binary the real-time Mercury operational pro-
gramming system onto one, two, or three self-loading system tape(s).

The flow chart for MXSTWl and its subroutines RDWRT, RDUNCY, and
CMPAR is shown in Figure 4-3.

4.2.1 Input Requirements

Input to MXSTWl consists of intermediate tapes B1 and B3, produced by an
SOS compilation, which contains the product of a squoze tape and mod deck
merging operation. Also, on entering MXSTWl, the AC will contain the origin
and length of BCOMB, a table of symbol definitions. This table lists the values
to be substituted for symbols used in writer and loader instructions which ref-

erence system locations. The values are contained in the address portion of
table entries.

4.2.2 Output Requirements

Output from MXSTWl is the absolute binary, self-loading Mercury oper-
ational system tape on A6.

4.2.3 Method

SOS reads in the A3 job tape and writes the system mediary input tape
(SYSMIT) on B1. B1 will contain Job 1 in binary and the dictionary of program
symbols. SOS then loads SYSMIT from B1 into memory and transfers control
(TCD) to SETORG. SETORG modifies SOS monitor communication cells to
permit communication between Jobs 1 and 2; then transfers control to MXSTWl.
The second time through MXSTWl, SOS writes SYSMIT for Job 2 on the B3
tape and the process cited for Job 1 is repeated for Job 2.

MXSTWl first checks the Entry keys to determine the number of system
tapes to be written and then tests for the job number--JOB 1 or JOB 2. JOB 1

is loaded the first time through, and MXSTWl writes the self-loading file
(MXLOAD) as the first file and the rest of the files from B1 on the first part
of the A6 tape. MXSTWl then writes the communication record (QDEFN) to be
read when JOB 2 is written. This record contains the job number, the number
of files written on the system tape(s) in JOB 1, and redundancies which occurred
in JOB 1.

After all files from JOB 1 are written, MXSTWl changes the SYSMIT tape
from B1 to B3 and transfers control to SOS. SOS then writes SYSMIT for JOB 2

4-17

MC 63-4

on B3, loads it into memory, and transfers to MXDEFN. The procedure is the
same as for JOB 1, except MXLOAD is not written as the first file on JOB 2.

Instead, the communication record is read. After the information is obtained
from the communication record, all files on JOB 2 are written. This completes

the writing of the A6 tape, and the writer duplicates SYSMIT B1 and B3 to re-
tain the dictionary and other information for dumps. MXSTWl then uses a
subroutine which compares the A6, B8, and C6 tapes (if all three are used).
After the tapes are compared, A6 is dialed to A1, the tapes are rewound, and

the LOAD TAPE button is pressed.

4.2.4 Usage

Operator' s Procedures:

a) Ready the standard SOS system tapes, using A3 as the input tape.

b) Ready the on-line printer.

e) Press CLEAR and LOAD TAPE buttons.

d) Enter in the keys the number of the system tapes to be written.

e) Ready the following tapes depending on the number of system tapes
to be written:

1) A6--if one tape is desired

2) A6 and B8--if two tapes are desired

3) A6, B8, and C6--if three tapes are desired

f) After each SYSMIT is loaded, control is transferred to MXDEFN
and then to MXSTWl. The program halts after printing an on-line

message to indicate the control transfer.

g) Press START to produce the self-loading Mercury System tape(s).

h) Any tape redundancies occurring during the writing of the system

tape(s) are indicated by an on-line message which indicates where

the redundancy occurred and what action to take to continue

writing the tape(s).

i) MXSTWl provides an on-line printout stating that the Mercury

System tape(s) is successfully written, and ifmore than one is

written, START should be pressed to compare the tapes.

4-18

MC 63-4

START

EXAMINE ENTRY
KEYS TO DETERMINE

THE NUMBER OF
TAPES TO WRITE;

STORE NUMBER
IN NUTA P

TESTLOCATION
ND TO DETERMINE \

JOB NUMBER

IND = 0 FOR JOB 1 /

IND ;_ 0 FOR JOB 2_/"

STRT1 _ =

J REWIND MXRASE

AND ALL TAPES
TO BE WRITTEN

TSX SETAD,4
PZE REWSY

SPACE

SPACE 4 FILES

ON MXRASE

MXRASE = BI FOR JOB I

MXRASE = B3 FOR JOB 2

I COUNT FILES ON I

MXRASE; COUNT IN
IR4. COUNT RECORDS

FOR EACH RECORD
COUNT IN IX1

STORE RECORD COUNT I

IFOR EACH FILE

STARTING AT

LOCATION TABLE

SUBTRACT CONTENTS l

OF CODSV FROM
FILE COUNT. STORE
IN LOCATION BSFCT

TESTJ21ND FOR
JOB NUMBER

JBIND = 0

®

YES

WRITE ON TAPE(S) 3-WORD
SEL F-LOADE R, CALL MXLOAD.

DELAY UNTIL ALL
CHANNELS DISCONNECT

TSX RDWRT,4
PZE LCH,I, I

BACKSPACE RECORD 1_
ON ALL

ABSOLUTE TAPES I

i
PUT C(IR4) = FILE

COUNT IN DECR.

OF TEST

1 -_ IR1

NUMBER OF FILES

NO
ADD 1 TO C(CODSV)

WHICH CONTAINS

TOTAL FILE COUNT

FOR BOTH JOBS

PUT C(IR1) IN ADDRESS
OF AC (TABLE

ENTRY CORRESPONDING
TO CURRENT FILE)

C(AC) -* "FILE"
P(AC) -_ IR2

I PICK UP "FILE" J
I FROM COMMUNICATION I

_ I RECORD STD IN I
- I HIND (JOB NO.) STA I

I IN CODSV(NO.OF I
I FILES FROM PREVIOUS JOB) J

I ADD 1 TO FILE +1 J

AND STORE IN LOC.
RAFFN AND SYFFN

TO INITIALIZE FILE
COUNT STORE JBIND

! AvEREDONDANC,ESJ
DUNW YES

TEST LOC. FILE +1 I
FOR REDUNDANCY INO. AS FOLLOWS:

A= 1 AANDB= 4
B = 2 AANDC = 5
C=3 BANDC=6

t
TO SET

REDUNDANCY

INDICATIONS FOR

PROPER CHANNELS

J

FIGURE 4.3. MXSTW1 PROGRAM FLOW CHART (Sheet 1 0[9)

4-19

MC 63-4

J SPACE OVER I
EOFON

MXRASE

ERR 2

CHECK READING _--

MXRASE." PRESS /-

TART TO CONTINUE/

/ MswEcc}TO PRODUCE

HAMMING CODES

TSX MSWECC,4

FILE,,2

1
J WRITE CONTROL WORD

(4 WORDS WITH HAMMING

CODES ON TAPE)

TSX RDWRT,4

PZE CODER,, 1

I
NO_- LOC POSMT ZERO)

YES

BSFB MXRASE TO
POSITION MXRASE

AT REQUIRED FILE
FOR JOB 1-AFTER

LOADER AND WRITER
JOB 2- AFTER COMMON

i
STL POSMT SO

MXRASE IS NOT

BSFB AFTER FIRST

TIME

READ PAST FIRST

RECORD OF FILE ON

MXRASE. DELAY UNTIL

, CHANNEL B DISCONNECTS

RTBB _"

READ RECORD UP TO
264 WORDS FROM

MXRASE INTO BLOCK
BEGINNING WITH "FILE"

DELAY UNTIL CHANNEL B
DISCONNECTS

I

YES, REDUNDANCY ON ,_
CHANNEL B

.oI

MSWECC /

(PRODUCES

HAMMING

CODES)

t

WRITE 264-WORD
RECORD ON TAPES

(_,_,_) FROM BLOCK
BEGINNING WITH"FILE"

TSX RDWRT,4

PZE HCW,,1

t

STORE"F,LE",.TOI
HMANN (CONTAINS J

RECORD ORGANIZATION J

AND LENGTH) J

L LAST RECORD IN
FILE DONE

YES

WRITE EOF ON

TAPES (A6, B8, C6)

INCREMENT IRI

BY 1 - GO TO "TEST"

FIGURE 4-3. MXSTWl PROGRAM FLOW CHART (Sheet 2 of 9)

4-20

MC 63-4

REEOF(_

INCREMENT LOC.

HIND BY ONE. HIND

CONTAIN JOB NO.

i

I STORE HNUM
(NO. OF JOB2) IN

LOCATION HT

i .YES/ MSWECC

JusELOC.H_NNTOI [

1

CALC.SYSORG ADDR. I I WRITE QDEFN TABLE I JTOBEUSEDFORJOB2FLE,_T_,,TCDAND IASLASTF,LEONABS.i i
NO-ORG" I TAPE(S) BEFORE SOS.

I TSXRDWRT, 4 PZE I I
I VCTBL, ,, ; I I

TEST LOC:
CHAOF - CHAN A
CHAOB - CHAN B
CHAOE -C_AN C

IF LOCARE _UA RE-
DUNDANCYOCC.ONCH,

t

J STORE C(CODSV) IN

ADDR. OF "FILE"
C(CODSV)= NO. FILES
WRITTEN TO DATE

J STORE C(HIND)

(JOB NO. IN DECRE-
MENT OF "FILE"

1
.2_ WERETNERE",

REDUNDANCIES|
IN JOB 1 /

GET SPECIFIC
REDUNDANCIES AND
STORE CORRECT NO.:
1 FORA 4FORA+B
2FORB 5FORA+C
3FORC 6FORB+C

I STORE CORRECT

NO. IN FILE+I OF
RECORD

(WRITTEN ON TAPE)

GO NO

MSWECC\
PRODUCESH._-\
ING CODES FOR /

COMMUNICTN. REQ/

WRITE COMM. RECORD
TO COMMUNICATE

BETWEEN JOBS
TSX RDWRT, 4
PZE CODER, I

MSWECC\
NA,,,,,I.GCODESF_
QVECK RECORD)/

I WRITE QDEFN REC.]
FOR JOB1 TO BE USED]
& UPDATED BY JOB2 I

TSX RDWRT 4 I
PZE VCTBL,,1 I

I

k

I REWIND ABSOLUTE J
TAPE(S)

REWIND MXRASE (B3)

I SPACE ABS. TAPE(S) J

TO END OF LAST I
FILE(CHECKFORRE-I
DUNDANCY)TSX I

RDWRT,4, PZEEOE,,0 J

J WRITE EOF ON ABS.

TAPES TO CAUSE A
DOUBLE EOF BEFORI

SOS FILES

DUPLICATE B1 I

(JOB 1 SYSMIT) ON
END OF

ABSOLUTE TAPE

t
CHANGE ADDR. OF I
OF SYSMIT TO B3 AT I
LOC. RDTB1 & DUPL.I
JOB2SYSMIT(B3) I

AFTER DUP. OF B1 J

CLEAR

LOC 3010 TO

300010

I "

CONTROL WORD
INDICATES

THIS IS LAST
PROGRAM FILE

i
I

STORE CONTROL
WORD IN LOC.

FILE + 1

1
(PRODUCES /

HAMMING CODES) /

1

J WRITE CONTROL

RECORD AND EOF
ON TAPES(S)

TSX RDWRT, 4
PZE CODER, l, 1

I

l
REWIND ALL

ABSOLUTE

TAPES WRI TTEN

PE SUCCESSFULLY'/
ITTEN" PRESS ST/

TO COMP.TPS

t

FIGURE 4-3. MXSTWl PROGRAM FLOW CHART (Sheet3 of9)

4-21

MC 63-4

I BSR ON SYSTEM I

TAPE(S) BEING MADE
POSITION BEFORE QVECK

CLEAR
MEMORY EXCEPT

WRITER

i

I CHANGE TAPE ADDRESS OF

SYSMIT (B1) TO B5 STORE
INSTRUCTIONS IN SOS TO

RESTORE SYSORG TO 300010
AFTER USING

CALCULATED SYSORG

TRA 16510; A LOC
IN SOS WHICH

SEARCHES THE A3
FOR THE NEXT

SOS CONTROL CARD
TO LOAD JOB 2

FIGURE 4.3. MXSTWl PROGRAM FLOW CHART (Sheet 4 of 9)

4-22

MC 63-4

SAVE IR 1 AND 4

IN LOCATION HAM

AND HAM+ 1

PUT PARAMETER INI

AC. STT IN HWEF
STD IN HWORD

l

STORE ADDRESS OF 1

PARAMETER (LOC I/O)
IN LOCATION

HRCHA, + 1, + 2

/P,CKUPI i
IFRO_LOC.I NO r
I XWRTP _ HWTRD : 0)
I PROPERIw_,T._S •
[WRSj _ADt

PICK UP FROM I

LOC XRDTP

PROPER RDS

_TORE PROPER SELECT I

(READ OR WRITE) I

IN LOC ADOR HSELT I

SET UP RCH AND

TCO COMMAND IN LOC
HSELT + I AND SL

RESPECTIVELY

HSELT

EXECUTE THE

PROPER READ
OR WRITE

COMMANDS (DELAY)

FIGURE 4-3.

WRITE AN _ O:Et_i E NO

EOF ON

TAPE(S) L F = 0
BEING

WRITTEN

I
v

RESET CELLS

HWEF AND HWTRD

(STORE ZEROS)

OoAREDUN"A"C-_XyE,,,"
CCUR ON THE _ ON

TAPE(S) / _ CHANNEL A_

.o

) (ON C.A..ELB_
.o

i 1ON

CHANNEL C

I

RESTORE

IR 2 AND 4

MXSTWl PROGRAM FLOW CHART (Sheet 5 of 9)

4-23

MC 63-4

I STL LOC CHAOF
TO INDICATE

CHAN A REDUNDANCI

RDUNY (_

I

SAVE IR2 AND 4

IIN LOC HAMY AND
HAMY + 1

t
PUT ARGUMENT

IN (AC) AND

COMPARE HTWD

< //_ COMPARE (AC)

CHAN A ERROR_. TO HTWD (2) JCHAN

/ / \ CHANIB ERRO_

/ PRINT: \ (A) I =
/ "REDUNDANCY ON \ I

(CHAN A WILL DIS- _ I
\CONTINUE WRITING/ i

_ ONCHANA" / RDUNB 1

RE-ORDER TABLE
OF COMMANDS BY
STORING CHAN A
COMMANDS OVER
CHAN B COMMANDS

t

PREVIOUS
REDUNDANCY

IN CHAN A

_l YES

RDUNE - t

I STOR_CO_ANDSIopC.ANBOVERI
COMMANDS OF CHANAI

I

C PRINT:

"REDUNDANCY ON\
CHAN B WILL DIS- _1
ONTINUE WRITING/

ON CHAN B" /
/

HEXIT _I _

I SUBTRACT ONE 1
FROM LOC NUTAP

(NEW NO. OF TAPE(S))

LOC NUTAP= 0

HAMY t NO

I RESTORE IR2AND4 I II

RDUNC

RE-ORDER TABLE
OF COMMANDS BY

STORING CHAN A
COMMANDS OVER

CHAN C COMMANDS

f_v,ou__o_ ,_

NO

PRINT:

"RELOAD A3 AND)

TRY AGAIN" /

t

__, PRINT:

'REDUNDANCY ON_
CHAN C WILL DIS'/
CONTINUE WRITING /

ON CHAN C" /
J

©

FIGURE 4-3. MXSTWl PROGRAM FLOW CHART (Sheet 6 of 9)

4-24

MC 63-4

I
PR,NT: \
"MXSYST (A6) FAILS _

TO COMPARE WITH/

MXSYST (B8)" /

t
PR,NT: \

"MXSYST (A6)
FALLS TO COMPARE /
WITH MXSYST (B8)"/

J LOAD IR1 WITH
NO. OF FILES
TO COMPARE

f

' SET UP PROPER

READ COMMANDS
TO PREPARE TAPES

WHICH WERE
COMPLETELY

WRITTEN (SETAD)

AREAD i _

RD A RECORD J
FROM EACH TAPE J

BEING COMPARED INTOJ
FOLLOWING BUFFER: J

MXSYST - HBUFA J
MXSYSB - HBUFB J
MXSYSC - HBUFC J

t No

(xs,s,

@--_M t YES
×sY_:BE,_GC_P'_

t YES

I SCHA IN LOC CTWRD I
AND FIND NO. OF

WORDS IN RECORD

t

PUT NO. OF WORDS]
IN RECORD IN IR4
(COMPLEMENTED)

HDATA J'
l-

NO _MXSYST COMPARES h

TO MXSYSB J

I YES

NOlM×SYSTCOMPARES_I I
TO MXSYSC Jr / I

FZ__1YES"kl

l ALLWORDSBEE._
COMPARED ._NO

(_ YES

COMBC t

TRA TO HERE

STORE (TRABC)
IN L(_3. MC.ONT + 2

t
SCHB IN LOC CTWAD J

JAND LOAD NUMBER
OF WORDS IN

RECORD IN IR4

._._ DOMXSYSB)AND MXSYSC
COMPARE

I YES

PR'NT: \
'THE TAPES BEING\

OMPARED DO NOT/

COMPARE" /

t

J HALT [J

?
YES (REDUCE IR1 BY)1; MORE FILES

.o

__RRORIN _ YESCOMPARI_/_

NO

< R,NT:>"COMPARISON
SUCCESSFUL"

&_

I-

FIGURE 4-3. MXSTWl PROGRAM FLOW CHART (Sheet 7 o[9)

4-25

MC 63-4

SCHA IN LOC
CTWR AND GET

THE NO. OF WORDS

PER RECORD IN IR4

MXSYSTCOMP,R S
WITH MXSYSB J

\
COMPARED DO /

NOT COMPARE" J

1
HALT]

YES

:OI_LA,C (_

STL KA TO SET
TRA TO HERE

STORE (TRA AC)
IN LOC HCONT + 2

CON_,B 1

STL KA TO SET
TRA TO HERE FROM

KA (EXCEPT FIRST
TIME) STORE (TRAAB)

IN LOC HCONT + 2

SCHA IN LOC

CTWRD AND GET
IN IR4 THE NO.

OF WORDS/RECORD

MXSYST AND _,_
MXSYSB COMPARE

I NO

PRNT/"THE TAPES BEING

COMPARED DO NOT

COMPARE"

YES

FIGURE 4- 3. MXSTW1 PROGRAM FLOW CHART (Sheet 8 o[9)

4-26

MC 63-4

INPUT AND OUTPUT TAPE FORMAT FOR MXSTW1

MERCURY
PHASE 1

OF JOB 1

FILE 4

(MXSTW])

DICTIONARY

FILE 3

(SOS)

FILE 2

(SOS)

FILE 1

(SOS)

DUPLICATE

JOB 2

(STSNOT)

DUPLICATE
OF JOB I

(STSNOT)

MERCURY

PHASE N

MERCURY

PHASE 1

JOB 2

FILE 4

(MXSTW1)

DICTIONARY

FILE 3

(SOS)

FILE 2

(SOS)

FILE 1

(SOS)

MXRASE FOR _ f"_--"% MXRASE FOR

JOB 1= SOS B1 _ JOB 2 = SOS B3

MERCURY

PHASE 2

MERCURY

PHASE I

SELF

LOADER

MERCURY ABSOLUTE SELF-

LOADING SYSTEM TAPE

FIGURE 4.3. MXSTWl PROGRAM FLOW CHART (Sheet 9 of 9)

4-27

MC _ _ •

4.3 MERCURY SYSTEM TAPE LOADER (MXLOAD)

MXLOAD occupies the first file of the self-loading Mercury operational
system tape (A1) and loads into core the programs and tables needed by the
system for launch data processing.

The flow chart for MXLOAD is shown in Figure 4-4.

4.3.1

a)

b)

c)

Input Requirements

MXLOAD as the first file on A1 and, if used, auxiliary tapes B8 and C6.

The Mercury system program files, which are error-corrected with
hamming codes and contain:

1) The file number in the address and the record count in the dec-
rement of the first data word in the first record of each file

2) A specially formatted information record in the second record of

each file. This record contains information for loading, table
processing, and coring. The format for this record is given in
the write-up for MYRSYS (see MC 63-2)

The TMDEFN table, an error-corrected file immediately following the
last program file.

Two preset tables referenced by MXLOAD:

1) TMHBUF--origined within the "common" area. TMHBUF entries
have the format

PZE D,E,F

where D is the length of a buffered routine, E is the number of
routines in the buffer block to be reserved in B unit, and F is the
block number for this block reserved in B

2) TMBF00--set at the end of COMMON in JOB 2 and origined into
the TMBF00 buffer. The first two words of each 3-word subset

are preset:

First word--PZE E,1, TMBFXX+E

Second word--PZE A length,, A ORG

Third word--PZE 0

4-29

MC 63-4

First word: P is negative the first time the buffer is used

D = E, the number of entries in TMBFXX

T must be 1

A = location of TMBFXX+E

The second word defines the A buffer. The third word defines the
B buffer.

4.3.2 Output Requirements

When MXLOAD has been executed, the programs of the Mercury Real-Time
Programming System, which are needed initially, are set for initial conditions
and stored in memory.

The following tables, which are either completely built by MXLOAD or
partially preset and built by MXLOAD, will be in memory. Only the entries

which concern MXLOAD are given below:

a) TMCORE--contains a 3-word subset for every file on the absolute
system tape:

1) First word--MZE indicates that the file is in A bank of core; PZE
indicates that the file is not in A bank. The decrement contains

the last location + 1 of the file, the tag contains the JOB number,
and the address contains the first location of the file

2) Second word--a 6-character BCD

3) Third word--address contains the B origin of the block for the
buffered routines

b) TMQKY2--address is set with the TMCORE entry for the routine.

c) TMREFR--prefix is set minus. The decrement is set with the file

number for all routines except buffered routines which are in core.
The decrements for these routines are set with the buffer number.

d) TMBF00--the third word in each subset is set. The decrement con-

tains the B buffer length and the address contains the B origin of the
buffer.

4-30

MC 63-4

e) TMBFXX--contains a 3-word subset for every buffered routine. The
first word of every subset is set by MXLOAD. The address has the
routine number and the decrement contains the routine length. The
prefix contains the location of the routine.

1) If P is negative, the routine is in A core.

If bits 1, 2 = 01, the routine was last at the lower part of B block.
If bits 1,2 = 10, the routine was last at the upper part of B block.

2) If P is positive, the routine is in B core. Bits 1, 2 have the same
significance as above. If bits 1, 2 are blank, the routine is on tape.

When all the programs and conditions have been set, MXLOAD transfers

control to the real-time program through MOINIT.

4.3.3 Method

When LOAD TAPE is pressed, a 3-word sequence bootstraps MXLOAD
into memory and transfers control to MXLOAD.

MXLOAD reads the first five files into memory and passes control to
MKTBL, a subroutine which extracts and processes information from TMHBUF
for entries to the internal loader tables and TMBF00. MKTBL makes the

following entries in the indicated tables:

a) BLOKl--address contains the origin of the block, tag contains the
number of routines in the file.

b) BORGN--address contains the origin of the block.

c) TABLE--address contains the block length, tag contains number of
routines in the block, decrement contains the block number.

d) TMBF00--the third entry of a subset contains the block length in the

decrement and the block origin in the address.

MKTBL then returns control to MXLOAD. MXLOAD continues to read the

program files by transferring to the MSLOAD subroutine with the requested file
number in the calling sequence. MSLOAD reads and decodes the first record,
then tests this information to see if it is the last program file. If it is not the
last program file, MSLOAD tests for the requested file and positions the tape
to the correct file. Information taken from this record is used to read in the

proper number of records from this file.

4-31

MC 63-4

The second record--the information record--is read in and decoded by the
HOME 1 subroutine. Information is extracted from this record to make entries

in TMCORE, TMREFR, and TMQKY2. The information is then tested for one
of six possible ways to process the record.

The file is-

a)

b)

e)

d)

e)

f)

Loaded into A core.

Loaded into A core and buffered.

Loaded into B core and executed.

Loaded into a block in B core.

Left on tape to be loaded into A core.

Left on tape to be loaded into A core and buffered.

After all program files have been loaded, the TMDEFN file is loaded and
control is transferred to MOINIT.

4.3.4

a)

Usage

The Mercury absolute system tape is mounted on A1 with the optional
tapes, if used, mounted on B8 and C6. The machine should be in the
65K storage and multiple-tag modes. The ECC and ICC are set for
execution and to reference A core.

b) When LOAD TAPE is pressed, MXLOAD is bootstrapped in and control
is transferred to MXLOAD. After MXLOAD has been executed, con-

trol is transferred to MOINIT. MXLOAD origins at location 1008;

the last location is approximately 23528 .

c) If a redundancy occurs, an on-line message will state the two options:

1) If sense key 4 is down, the tape will back up one record and try
to reload when START is pressed

2) If sense key 4 is up, the remaining program files will be loaded
from the optional tapes, B8 and/or C6, when START is pressed.

4-32

7tR#'_lvl_ 63-4

I

READS INTO

BLOCK BEGIN-
NING WITH

BUFF

READS INTO
BLOCK BEGIN-

NING WITH
BUFF

MSLOAD_

SAVE INDEX
REGISTERS AND

SET UP RETURN

I STORE FILNO INADDR OF FILER

J TURN OFF ANY
REDUNDANCY

CONDITION

TEST READY STATUS

OF MXSYSB AND

MXSYSC. IF READY

SET BREDY FOR

MXSYSB, CREDY FOR
MXSYSC

STORE IN NUSCP

THE NO. OF TAPES

TO BE SPACED
BESIDES AI

IS NUSCP 2

I
T NO

RE-ORDER THE

TABLE OF COM-
MANDS BY

STORING CHAN C
COMMANDS OVER

CHAN B

READS INTO
BLOCK BEGIN-

NING WITH
BUFF

, NO

t ,'Rs'>f'T-- "_' RD RECORD, PUT
\ ADDR OF LAST

WORD IN IR2

J REWIND TAPE(S)J

f ,sADDROFLAST_ ANDSPACEPASTI
WORD> BUFF + 6 FIRST FILE ON

_l NO "/ J TAPE(S) J

- I Yes i

/f IS ADDR OF LAST _ '._c_t'_'_ I

L WORD>BUFF /"V A) /RST \ I
/ - v I RD RECORD AND PUT _------.I

\ADDR OF IAST WORD/ |

/ RST " \ \ ,N,R2 / I
j/RD RECORD AND PUT\

-----_ ADDR OF LAST WORD/ 1

k IN IR2 / flS ADDR OF LAST_ YES

-- J. -- _WORD< BUFF + 5)
I[_. OR >-BUFF + 6 j/

IS ADDR OF LAST) NOWORD < BUFF

t No

IS ADDR OF LAST _'_WORD <BUFF+6

YES

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 1 of 14)

4-33

MC 63-4

CWORD

HOME

I

MSWRECC,

TO REMOVE

HAMMING CODES

IS THIS THE

DESIRED FILE NO.

PUT BUFF + I
INTO AC

YES

C(BUFF) _IR 1 ,j--

I

CsT } IRD RECORD AND

PUT ADDR OF LAST

WORD IN IR 2

READS INTO

BLOCK BEGIN-

NINGWlTH

BUFF

;RE THERE EXACTLY" NO

64 WORDS IN RECORDJ

PUT

LAST RECORD

NO

YES

MSRECC _ ERROR
TO REMOVE

HAMMING CODES

t
TRANSFER INPUT

TO REQUIRED

LOCATIONS

YES

TEST REDUNDANCY

AND SET UP ERROR

RETURN, IF ON

THIS LAST
E CONTROL

WORD

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 2 o[14)

4-34

MC 63-4

READS INTO
BLOCK BEGINNING

WITH BUFF

READS INTO

BLOCK BEGINNING
WITH BUFF

(IS THE DESIRED _

.JFILE NO. BEHIND

YES

BACKSPACE THE IREQUIRED NO.
OF FILES

RST1RD RECORD AND
PUT ADDR OF LAST

WOR_ IN IR 2

k WORD> BUFF

I NO
,ul

TESTC

RD RECORD AND
PUT ADDR OF LAST

WORD IN IR 2

< M'REcc./TO REMOVE
HAMMING CODES

IS THIS THE "_
DESIRED FILE NO.

ES

NO

SPF

SPACE AHEAD

THE DESIRED
NO. OF FILES I

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 3 of 14)

4-35

MC 63-4

ERROR ?

LOADING

IZ_s
CSTRT I--

{,sMxsYs , o.},.,o_,;
LOADING -

I YES

IS MXSYSB IN

READY STATUS

] NO

NUSCP = 2

YES

STORE PROPER

I/D COAO&_ND

AT RCHA+ I AND

RCHA + 2 SO

MXSYSC CAN

NOW LOAD

HLOAD I_--

I SUBTRACT ONE JFROM NUSCP

BACKSPACE

1 RECORD

ON MXSYSC

1

STORE PROPER

I/D COMMAND
IN RCHA + 1

SO MXSYSB

WILL NOT LOAD

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 4 of 14)

4-36

,t__ ¢'DMC uo-4

IS SWITCHCLOSED (TXL)

YES
HOME 1

h NO

J

BUFFL

SET UP ADDR
AT GET AND PUT

NO. OF
RECORDS

IN FILE

OPEN SWITCH

CHANGE TXL '_
TO TXM /

{
I PICK UP FILE

NO. FOR THIS

FILE

GET COMPLEMENT
OF :I"MCORE ENTRY

FOR THIS FILE IN IR 4

i
SAVE IR 4

IN LOC NET

(USED LATER)

{
PLACE ROUTINE

INFORMATION

IN CORE TABLE

t
SAVE C(BUFF + 3)

MODIFIED BY

IR 4 IN LOCATION

MARK + 1 AND HOME4

GET NO. OF

ROUTINES IN THIS
FILE FROM PREFIX

AND TAG OF BUFF + 3

I

HOME2

PUT FILE NO.

IN DECR. OF

TMREFR FOR

EACH ROUTINE

i
PUT TMCORE LOC.

FOR FILE INTO EACH

TMQKY2 ENTRY

FOR EACH ROUTINE

HOME3

(HAVE WE IMAN= E '_ NO

j--FORALL ROUTINES

IN FILE

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 5 o[14)

4-37

MC 63-4

CKFRB?

INITIAL FILES
LOADED

YES

J PUT C(HOME3) IN

IR1 AND DECR.

OF LOC. MARK

HOME4

PUT RECORD COUNT

INTOIRI AND

CONTINUE TO LOAD

T PU U F+iLOAD INTO B UNI +1 (IR1 = NO. OF ROU-
TINES IN FILE)

NO HPASS
DOLDA

_ PUT ADDR OF NSKIP

I

LOAD THIS FILE INTO LOC THINK

YES

BUFFERED FILE

SKPAB _ YES

PUT ADDR OF

NSKIP IN ADDR OF

LOC THINK

PUT BUFF+4,1 INBUFFI

+I (IRI = NO. OF ROU- J

TINES IN FILE) J
I

SET LOCATIONS

HONTB AND NOTAB
NONZERO

SET LOCATION

LOUNA TO NONZERO

SET LOCATION

HONTP NONZERO

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 6 of 14)

4-38

MC 63-4

UPDAT (_

PUT ORG OF
FILE IN ADDR
OF TEMP + 2 _.

AND LENGTH OF
FILE IN DECR
OF TEMP + 4

YES N_KIP
ROUTINE -- ISPACE ALL SYSTEMJ

UMBER IN DUMMY NO_.N.._,.ITAPES PAST THIS FILE I

RECORD .J . J WITHOUT LOADING]

HMXZ I YES 1

NUMBER IN IR2 SET LOCATIONS
LOUNA, NOTAB,

HONTP TO ZERO

TMBF00 FOR

THIS BLOCK

SET SIGN

.o_ _o.o__----_ OF_._c,_,_
IN B 1 I TMBFOOMINUS

I YES ' l

STORE SPECIFIC J

TMBF00 BACK

IN TMBF00

l
STORE ADDR

OF THIS TMBF00

INTO LOC STOLG

AND STONO

l
FIND THE FIRST

SPECIFIC TMBFXX

TABLE WHICH HAS

NOT BEEN USED

t
PICK UP TMCORE

ENTRY FOR THIS

FILE AND PUT

IN LOC TEMP + 9

[

TO ZERO AND PUT

TEMP + 4 IN C(AC)

STONO

PUT LENGTH OF

FILE (ROUTING) IN

SPECIFIC TMBF00

LOCATION

THIS FILE

LOADED IN
A UNIT

12o
l-

I STORE INTO I

SPECIFIC

TMBF00 LOC

IN I
OF

TM BFO0
I !SPECIFIC IL.._ 1

SET SIGN J

OF SPECIFIC

TMBF00 MINUS

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 7 o[14)

4-39

MC 63-4

PUT ROUTINE
NUMBER IN AC

1
C FILE BUFFEDIN B UNIT

STOLG _ YES

STORE ROUTINE J

NUMBER IN SPECIFIC

TMBFXX ENTRY

I_
r

INCREMENT

IR1 AND IR2

BY MINUS ONE

PUT COMPLEMENT

OF ROUTINE

NUMBER IN IR4

C ROUTINE LEFT _ NOON TAPE

_.YES

ROUTIN E LOADED

UNIT

YES

TURN OFF R BIT

IN TMREFR FOR

THIS ROUTINE

SETRF I

PUT SPECIFIC

TMREFR ENTRY

INTO AC

ROUTINE NUMBERS

START AT

BUFF + 3

STORE BLOCK NUMBER

IN DECREMENT

OF SPECIFIC

TMREFR

CFILE LOADED IN

J--B UNIT

YES

SET SIGN OF

TMREFR

ENTRY MINUS

STORE SPECIFIC

TMRE FR ENTRY

BACK IN ITSELT

I PUT ADDRESS OF

TMCORE ENTRY FOR

THIS FILE IN ADDRESS

OF TMQKY2

C FILE BEING LEFTON TAPE

YES

PUT A ONE IN

PREFIX OF

SPECIFIC TMREFR

ENTRY

I.

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 8 of 14)

4-40

MC 63-4

LOC THINK

INSTRUCTION

WILL BE TRAN

SKIP IF SPACED

MAI;[I<; (_

ALL ROUTINE)NO
NUMBERS HANDLED

YES

PUT IN IR1 THE I

RECORD COUNT

REMAINING FOR

THIS FILE

I PUT SPECIFIC

TMCORE ENTRY

IN AC

FILE LOADED INA UNIT

YES

J SET TMCOREENTRY MINUS

J RESTORE TMCOREENTRY

FILE LEFT ON)NO
TAPE

t YES

J PUT A ONE IN J
PREFIX OF

TMCORE ENTRY

THINK _--

SPACE THIS FILE)YES

_ NO

LOAD INTO B UNIT) YES

I NO

I RESET LOC

NOTAB, HONTP,

LOUNA TO ZERO
INCREMENT IRI BY I

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 9 of 14)

4-41

MC 63-4

PRINT:

ERROR FROM

MSRECC PRESS

START TO

(_ONTINUE

I
HALT

NO
_O TO

RATZ

BLOK] CONTAINS J

B UNIT ORG

FOR BLOCK

MLODB (_

,,.

J LOC TEMP

J BUFF + 1 = PZE A, B,

l
PUT MINUS BLOCK J

NUMBER IN IR2 IAND PUT SPECIFIC

BLOKi IN AC

t UNTB3

WO OUTINES IN THIS BLOC_

_ES
BHOME |

READ A RECORD

f
RECORD = 264 WORDS)

YES _
i

PUT WORD COUNT J

IIN IR4 AND AC

(DECREMENT OF BUFF)

i

l SET UP LOC]

MGET WITH A

UNIT ADDRESS TO

GET WORDS

I ADD SPECIFIC BLOKI J

TO WORD COUNT OF

RECORD AND STORE

IN MPUT

MGET

I P,CKUPWORDS]t REAOFROMTAPE
J INTO A UNiT

t
EXECUTE SEB

L_

A = LENGTH OF FILE
B = NO. OF ROUTINES

IN BLOCK
C = BLOCK NUMBER

PUT LENGTH NEED FOR

THIS BLOCK IN AC

(GET FROM TABLE)

i
SUBTRACT TEMP

(CONTAINS LENGTH

OF FILE) FROM AC

I STORE IN SPECJFIC I
BLOCK THE ORG FOR

THIS FILE IN B

t

MPUT I

I STORE WORDS I

IN B UNIT

AREA RESERVED

EXECUTE SEA

ARE ALL RECORDSLOADED

YES
I

ADD ONE TO THE J

IDECREMENT OF

SPECIFIC BLOK1

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 10 of 14)

4-42 {I

MC 63-4

Tx,sF,LEBUFFERED WITH
TWO OTHER FILES

I YES

YES

NO

NO J PUT A TWO
IN SPECIFIC

- J TMBFXX ENTRY

PUT A ONE IN
PREFIX OF SPECIFIC

TMBFXX ENTRY

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 11 o[14)

4-43

MC 63-4

MKTBL (_

PUT MINUS ONE IN

IR2, PUT MCLODB

IN IRI

I SAVE VALUE

OF MCLODB

IN NOETY

EXAM

PUT TMHBUF+N

IN AC

TMHBUF = PZE A, B, C
N = 0 -* MCLODB-I

I

J SHIFT POS 18-20

IN AC RT. 15

TO POS, 33-35

IN BLENG

C(AC) = NUMBER OF

ROUTINES IN BLOCK

1
BLENG : 3

_NO

i IIN AC AND

TMHBUF+N+I

IN MQ

AC > MQ

_NO

PUT C(AC) IN

MQ AND C(MQ)

IN AC

LOC LARGE

NOW C(LARGE) =

LARGEST ROUTINE

t

r MCLODB EQU

• NUMBER OF B UNIT

BUFFERED ROUTINES

I
I STORE ADDRESS OF AC IN

CORRECT TABLE ENTRY
(SPECIFIED BY IR2)

STORE TAG AND DECREMENT
IN CORRECT TABLE

i
ADD SPECIFIC

BLOK1 LOC FOR

EACH BLOCK OF

ROUTINES

t

J STORE C(AC) IN

BLOKI FOR NEXT

BLOCK OF ROUTINES

6

EACH BLOKI Log
CONTAINS ORGOF

EACH B UNIT BLOCKS

DFROUTINESlN ADDRESS

AND BLOCK NUMBER

IN DECREMENT

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 12 of 14)

4-44

MC 63-4

I AC NOW HAS I

SUM OF THE

LARGEST TWO

ROUTINES

EACH TABLE LOC J
CONTAINS BLOCK LENGTH INEEDED, BLOCK NUMBER,

AND NUMBER IN

; BLOCK

J SETS UP

ORIGIN

FOR NEXT

BLOK 1 LOC

?
PUT TAHBUF+N IN

AC AND TAHBUF+N+I

IN MQ

0 = N < MCLODB

Is C(AC) > C(MQ)

NO_
EXCHANGE

C(MQ) WITH

C(AC)

)

-I
STORE C(MQ)

IN LOC SMALL

l
ADD TMHBUF+ N

TO TMHBUF+N+I

AND TMHBUF+N+ 2,

STORE IN TOTAL

i
SUB C(SMALL)

FROM C(TOTAL)

J STORE CONTENT J

AC IN CORRECT

TABLE LOCATION

J ADD BLOKI LOC J

CORRESPONDING TO

TABLE AND STORE IN

NEXT BLOKI LOC

CKOUT 1

PUT C(BLENG) IN

IR4 AND

INCREMENTIRi

BY MINUS ONE

"1
J SUBTRACT ONE

FROM LOCATION

NOETY

1

ALL BLOCKS IN

B UNIT HELD

C(AC) = 0

_ NO

._ FINISHEDWITH THIS BLOCK

YES _

J INCREMENT IR2

BY MINUS ONE

AND EXAMINE

NEXT BLOCK

J RETURN

TO LOAD
REMAINDER

OF
FILES

I

I

>o
)

GO TO

EXAM

FIGURE 4-4. MXLOAD PROGRAM FLOW CHART (Sheet 13 of 14)

4-45

MC 63-4

/ PRESS
_i, LOAD I

RUSTY

MXLOAD t /PRINT MESSAGE& ,
r" _ NO / PROGRAM IS INB _,_,_o,_o_o__ u.,__u__ o__ I

2ANcY X_ . J \-REL_DPROGR;;_'/- l J
/ \ J. YES _SETTING: 32K-B)/ [/ PRINT MESSAGE: \ - T __

,/ TURN,SK_ _,
•,, SW,TCNON/ k ECCON j

REDUNDANCY LIGH_ RELOAD FIRST IFOR A ON ,_ j FILE FROM A1

l NO
READMt= I

PUTFF,L,N,R21 (_-(FF,L=F'RSTFILETO
LOAD)

I-

•I < -)MSLOAD

STOREC(,R2),N TOLOAi FILE_ALLINGSEQUENCEf INCREMENT,R2.Y 1
TO_SLOAD ,ONEANDSTOREC('R_II

l J IN CALL SEQUENCE J

t ! TOMSLOAD I

(.SLO,,°) , _TO LOAD NORMAL RETURN

THtS FILE FROM MSLOAO

IR2 ---- FROM

BY A ONE NLSLOAD

I
ST (RE C(IR2)

IN REAM+ 3

AND CON LO + I

.._ ALL INITIALFILES LOADED

THIS IS A PER- I

PETUAL LOOP ONLYI

BY NOT RETURNING I
"- FROM MSLOAD J

DOES ONE GET I

OUT OF LOOP I

FIGURE 4.4. MXLOAD PROGRAM FLOW CHART (Sheet 14 of 14)

4-46

MC 63-4

4.4 EXTENDED DEFINITION OF SYMBOLS PROCESSOR (MXDEFN)

MXDEFN automatically extends the definition of specified symbols among
"n" separately compiled jobs during program execution. Thus, these symbol
definitions are made available for referencing from any and/or all jobs.

Ths flow chart for MXDEFN is shown in Figure 4-5.

4.4.1 Input Requirements

MXDEFN requires as input at least one QDEFN macro.
definition is as follows:

QDEFN MACRO ENTRY, ENO, XSYMB

TCD VCINT

BCI 1, ENTRY

FVE ENTRY,, XSYMB

XSYMB ORG TMDEFN + ENO- 1

END

where the parameters are

The QDEFN macro

ENTRY--the 6-letter symbolic name of a routine, processor, subroutine,
etc., that requires an extended definition.

ENO--the sequence number or count.

XSYMB--the symbolic address of the extended definition of ENTRY.

A system example in the use of the QDEFN macro is:

QDEFN MYHSOD, 1, XYHSOD

which expands into

TCD VCINT

BCI 1, MYHSOD

FVE MYHSOD, , XYHSOD

XYHSOD ORG TMDEFN

4-47

MC 63-4

4.4.2 Output Requirements

Output from MXDEFN consists of an extended definition table and several
diagnostic messages.

a) TMDEFN--a table of extended definitions of the form TRA ENTRY.

One core location for each QDEFN macro is reserved automatically.

b) Diagnostic Messages

1) QDEFN ENTRIES, NONDEFINED--each ENTRY of the QDEFN

macros that is not defined in either "n" compiled jobs is listed
following this heading.

2) QDEFN ENTRIES, MULTIDEFINED--each ENTRY of the QDEFN
macro that is defined in two or more jobs is listed following this
heading.

3) REPOSITION QDEFN ENTRIES SO THAT LAST QDEFN MACRO
HAS GREATEST NUMERICAL ENO. DO NOT CONTINUE. If

the last QDEFN macro does not have the greatest numerical ENO
and ff ENTRY of the QDEFN macro with the greatest numerical
ENO is defined in either job, the extended definition for ENTRY
is not determined and the message above is printed.

4) UNDEFINED SYMBOLS BETWEEN, AND INCLUDING, THE
FOLLOWING TWO SYMBOLS ARE QDEFN ENTRIES. The first

and last symbol processed by MXDEFN that appear in the diagnostic
undefined listing of SOS are printed following this heading for each
of "n" jobs. All QDEFN diagnostic messages are printed on-line
and written on output tape A2 for off-line printing.

5) MXDEFN OVERLAPS TMDEFN TABLE. RELOCATE TMDEFN
TABLE TO HIGHER CORE LOCATION. DO NOT CONTINUE.

This heading is printed whenever overlapping occurs. Overlapping
results because the TMDEFN table is located within a file that

overlaps MXDEFN.

q

q

4.4.3 Method

The logic of extended definitions takes advantage of the method employed
by SOS in assigning absolute values to undefined symbols within a job at compile
time.

The address of the last word in a file plus one, or more precisely, the
value of the location counter at the end of a file is assigned to the first undefined

4-4R i

MC 63-4

symbol encountered within that file. This value is continuously incremented
by one and assigned to each subsequent undefined symbol within the file.

By strategically placing ENTRY, ORG, TCD (TCD creates a file) in this
order (see input requirements) the absolute value assigned to undefined symbols

may be predetermined and controlled. Utilizing this logic SOS is forced to
assign each undefined ENTRY of the QDEFN macro to a unique address with-
in TMDEFN. A comparison routine, MXDEFN, processes all requested
QDEFN ENTRIES per job, and their correct definitions, when found, are stored
in their unique locations in TMDEFN.

The requested symbols for extended definitions normally are addresses of

unconditional transfers. TMDEFN, which is saved and restored throughout the
processing of "n" jobs, becomes a table of extended definitions during execu-
tion time of system runs.

4.4.4 Usage

Entry to MXDEFN is via the address, VCTSX, of the first TCD card in the
system. Subsequent entries are to VCINT (the initialization section of MXDEFN)
after reading each QDEFN record from SOS erase tapes. Exit is to MXSTWl,
the system writer.

In addition to processing ENTRY symbols, MXDEFN determines the job of
a multiple job system and rewinds ABS system tape A 6 ff Job 1 is being
processed.

a) Storage Required--268 locations.

b) MXDEFN Uses:

1) Macro--QDEFN

2) Subroutines:

External--SOS READ FILE, PRINT, and MSRECC

Internal--VCWTD

3) Parameters--ENTRY, ENO, XSYMBL, and MNDEFN

4) Communication Cell--JBIND

5) Constant--VCTWO

6) Absolute Locations--loc 2, loc 300010 , loc 300110

7) Tables:

External-- TMDE FN

Internal--VCDFN

8) Mask--VCTRA

9) Internal CeUs--VCRNT, VCFRT, and VCLST

4-49

MC 63-4

c) Time Required (approximately):
n m

Time (/_ sec) =i_= lj_l [(Wl + W2)

where

÷

K = 156.96p secs.

T1 = 87.2 p secs.

T2 =

M

N =

106.8 p secs.

variable

variable

K = time required to initialize.

T 1 = time required to process one QDEFN

RECORD if its ENTRY is undefined.

T 2 = time required to process one QDEFN

RECORD if its ENTRY is defined.

M = number of QDEFN macros in one job.

N = number of jobs processed.

4-50

0 o-'-J:

SWITCH = a

FOR INITIAL EXEC.
= al FOR

SUBSEQUENT
EXECUTIONS

THIS READ CYCLE IS
TERMINATED BY A TCD

CARD PLACED AT
THE END OF THE

LIST OF QDEFN
ENTRIES. THE

TRANSFER ADDRESS
OF THIS TCD CARD

IS TO VCPRT

(SEE SHEET 4 OF 4)

VCTSX t_-

t_ _(SWITCHa :al

1°
SAVE SOS

CONTROL TRANSFER

(LOC. 2)

®

SET a = al

RESTORE SOS
CONTROL TRANSFER

(LOC. 2)

tREAD ONE QDEFN FILd

-- -- FROM TAPE MXRASE /
INTO LOC. SYSORG /

(TSX 82, 4) J

(READ ERROR

NO

®

BACKSPACE TAPE

MXRASE TWO

RECORDS

VCINT

LEAVE TRANSFER J
TRAP AND FLOATING

PT. TRAP MODES

t
SET UP TRAP CONTROq

/

TRANSFER FOR J
i MXDEFN(LOC. 2) |

CLEAR I
ENTRY CELL

(VCRNT)

6

I

HALT

EXECUTION IS
RESUMED BY

PRESSING CONSOLE
START BUTTON

FIGURE 4-5. MXDEFN PROGRAM FLOW CHART (Sheet 1 o[4)

4-51

MC 63-4

SWITCH =/3 FOR
INITIAL EXEC.

AND/31 FOR
SUBSEQUENT

EXECUTIONS

®

VCSWT ?

t TU..O..o.,.o_ I _=C;c_C_"
I FOR CH. A CH. B ANDI I ' I
I CH_ IFON' / VCCHA I
I " 1 _ /'_VCCHB I

_I k.r) VCCHC ',
r _ J J READ CONTROL REC- J

/ CH.ASYSTEM_ I I ORD FROM TAPE I . ..
TAPE IN _ MXSYS(X) TURN OFF J....

_,,,, READY STATUS JYES t I REDUN. IND. IF ON I

I NO VCLXD 1

CONTROL RECORD
READ INTO RESERVED

LOCATIONS, FILE

J ESET DATA CH. A]

1
(c.BSYSTEM_TAPE IN /"

READY STATUS

I NO YES

RESET DATA CH. B I

1

PRINT MSG THAT NO I

TAPE IS IN READY

STATUS FOR WRITING

OF SYSTEM TAPE

EXECUTION IS I 1

PRESSINGRESUMEDCONSOLEBY / [
[--- HALT

TART BUTTON AFTERI

READYINGTAPESYSTEM J| (_

1
CHCSYSTEM"_TAPE IN)

READY STATUS J YES

I RESET DATA CH. C I

JOB 1

_ NO
SET JOB

INDICATOR

(
I

1
I ERROR CORRECTCONTROL RECORD

[READ QDEFN l
RECORD FROM J

J TAPE ND(SYS(X) I :

JREPOSITION MXSYS(X) J

VCCOR 1

ERROR CORRECT JQDEFN RECORD

SET/3=/_1 I

SYSORG t

I STORE LOC. + 1
INTO LOC. 0 AND

TRAP TO LOC. 2

LOC 2_

YES
SWITCH

CHANNELS

I YES

ERROR

SWITCH CHANNELS

FIGURE 4-5. MXDEFN PROGRAM FLOW CHART (Sheet 2 of 4)

4-52

MC 63-4

I

MXDEFN

QDEFN ENTRY
AC

QDEFN ENTRY

DEFINED IN JOB

BEING PROCESSED

YES

DEFINITION

EQUAL

ZERO

_EFN ENTRY

PREVIOUSLY

pROCESSED

NO

YES

YES

QDEFN END

SEQUENCE

CORRECT

YES

ENTRY

PREVIOUSLY

pROCESSED IN

NO

"REATE "TRA ENTRY"

AND STORE IN

TMDEFN TABLE

VCUDF

VCOVR

OuTPUT MSG.

THAT QDEFN

ENTRY MULTI-

DEFIN

SAVE ENTRY

SYMBOL OF FIRST

UNDEFINED QDEFN

YES

SET y = yl

SAVE ENTRY

SYMBOL OF

LAST UNDEFINED

QDEFN

PROCESSING

JOB 1

NO

)EFN ENTRY

DEFINITION FOUND

IN PREVIOUS

JOB

NO

VCAXC

SYMBOL OF
NONDEFINED

QDEFN ENTRY
FOR LATER OUTPUT

FIGURE 4- 5.
MXDEFH PROGRAM FLOW CHART (Sheet 3 of 4)

4-53

MC 63-4

ALL OUTPUT IS

PRINTED ON.LINE

AND WRITTEN

ON TAPE A2

SWITCH REMAINS]

(_ IF LAST QDEFN

ENTRY HAS GREATEST --

NUMERICAL

ENO

(ANY NONDEFINED

QDEFN ENTRY

SYMBOLS FOR
OUTPUT

q YES

OUTPUT
NONDEFINED

QDEFN ENTRY

SYMBOL

OUTPUT FINISHED_'_

YESVCRGS

OUTPUT RANGE OF

QDEFN ENTRIES THAT

APPEARINSOS

UNDEFINED LISTING

VCST 1

SWITCH_:_1

L°

NO

NO

VCNEE

01

OUTPUT MESSAGE

REGARDING

INCORRECT QDEFN

ENO

FIGURE 4.5. MXDEFN PROGRAM FLOW CHART (Sheet 4 of 4)

4-54

MC 63-4

4.5 SYSTEM COMMUNICATION DURING DUAL COMPILATION (SETORG)

SETORG communicates common information between Jobs 1 and 2 during
dual compilation and provides to the isolated tape writer program MXSTWl
the address and number of entries in BCOMTB, a table of definitions.

The flow chart for SETORG is shown in Figure 4-6.

4.5.1

a)

b)

Input Requirements

Address of first word of the first record on the B4 tape contains the
address of MXSTWl.

Sense indicators are set with the mask 2304531, right-justified, if the
run is a compilation.

4.5.2

a)

Output Requirements

SYSORG--cell whose address is set:

alpha PZE ENDJB1

b) SYSFLO--table whose firstword is set:

alpha PZE ENDJB1 , , M01NIT

c) MXSTWl--self-loaded intoexecution buffer.

d) AC--address contains location of BCOMTB table and decrement con-

tains table length.

e) BCOMTB--table whose entries contain definitionsfor MXSTWl.

4.5.3 Method

SETORG receives control from SOS to establish common areas between

Job i and 2 during dual compilations and to provide the entry to MXDEFN
during program execution. When the run is a compilation, SETORG returns
control to SOS after performing the necessary processing operations. With
SOS load-and-go (LG) runs, however, MXDEFN is entered before control is
returned to SOS. MXDEFN updates TMDEFN, a table of extended definitions.

When SETORG is entered during Job 2, MXSTWl loads itself into core,
receives control from SETORG, and processes entries in the BCOMTB table.

4-55

MC 63-4

4.5.4 Us age

SETORG is entered from SOS and exits to either SOS or MXDEFN.

a) Storage Required--60 locations.

b) Time Required--0. 082 milliseconds, excluding time to rewind B4 and
to load MXSTWl.

4-56

SETORG

SET SYSORG

AND SYSFLO
TABLE

IS THIS

A CPL OR
IS IT A LG

RUN

G ENTER

MC 63-4

START

READ IN

THE WRITER'S

BOOTSTRAP

RECORD

BOOTSTRAP
IN THE

WRITER

LOOK AT
THE WRITERS
BOOTSTRAP

RECORD

SET UP FOR
TRANSFERING

CONTROL TO
THE WRITER

PUT THE ORIGIN
AND LENGTH OF

THE BCOMTB

TABLEINTO
THE A.C.

FIGURE 4-6. SETORG PROGRAM FLOW CHART

4-57

MC 63-4

4.6 REAL TIME TRANSFER TRAPPING TEST PROGRAM (MTTEST)

MTTEST is used in the real time Mercury tracking system to locate the
following types of program errors:

a) If certain location(s) are being erroneously changed, MTTEST can
determine the instructions that caused the error and provide for a
dump to give the machine condition at the time of the error.

b) If control is being erroneously transferred to a certain routine, a
certain part of a routine, or to a certain location in core, MTTEST can
determine the exact transfer instruction that caused the error and

provide for a dump to give the exact machine condition at the time of
the error.

Five other programs are included with MTTEST: MTTES4, MTTESA,
MTTESB, and MTINIT--all are considered to be part of MTTEST.

The MTTEST program flow chart is shown in Figure 4-7.

4.6.1

a)

b)

c)

d)

e)

input Requirements

MXCHNA--cell set for MTTEST by the channel A users. Each

channel A processor, when itgains control, stores the location of its

trap processor in the address of MXCHNA. MTTEST requires that
MTTESA gain control whenever a channel A trap occurs. After

MTTESA has been executed, ittransfers to the correct trap processor

by referencing MXCHNA.

MXCHNB--cell set for MTTEST by the channel B users. This cell is
the channel B counterpart of MXCHNA and is used by MTTESB.

MXCHNC--cell set for MTTEST by the channel C users. This cell is
the channel C counterpart of MXCHNA and is used by MTTESC.

MCPROC--nonzero ifthe machine is inhibited;zero otherwise. Because

a transfer trap can occur while the computer is inhibited, MTTEST

must know the status of the computer so that itcan return control

with the computer in the proper mode. MCPROC is set to nonzero by

MTTES4, MTTESA, MTTESB, and MTTESC and is reset to zero by

MOPRIO.

MCTRAP--nonzero if the computer is disabled. This cell is set and
reset by the two Mercury system macros QENB2 and QENBA, re-
spectively.

4-59

MC 63-4

g)

Location 0--in the transfer trap mode, this location contains the
address of the last transfer instruction that caused a trap.

ZZZETM--location which is nonzero if the machine is in the transfer

trap mode; zero otherwise. Because of timing, it may be desirable
to have the computer in the transfer trap mode only for specific
routines in the real time system. When this is the case, the two in-
structions STL ZZZETM and ETM must be removed from MTINIT.

Then, each routine in the transfer trap mode must execute those two
instructions on entry and the instructions STZ ZZZETM and LTM on
exit. (Note, however, that if a routine being executed in the transfer
trap mode is interrupted by other than a transfer trap, the entire
Mercury system will operate in the transfer trap mode until control
is returned to the interrupted routine and its execution is completed.)

4.6.2

a)

b)

c)

d)

Output Requirements

Location 3--contains trap information when a trap occurs on the DCC
or another external device. If MTTES4 detects that control was

trapped from location 1, MTTEST, MTTEST + 1, or MTTEST + 2
(before MTTEST could disable the machine) MTTES4 computes the
effective address in the Mercury system to which MTTEST would have
returned, and stores this address in location 3. After performing
all of MTTEST's duties, MTTES4 transfers to the external trap control
routine MORTCC. With this method, the logic proceeds as if MTTEST

had completed its work and the external trap to location 4 had not oc-
curred until MTTEST had returned control to the Mercury system.

All of this is necessary because once a transfer trap occurs, MTTEST

must complete all of its functions before allowing another transfer

trap.

Location ll--contains trap information when a trap occurs on channel
A. MTTESA gains control from a trap on channel A and acts on
location 11 in a way completely analogous to the way MTTES4 processes
location 3.

Location 13--channel B trap location cell. This location receives the
output of MTTESB (see parts a) and b)).

Location 15--channel C trap information cell. This location receives

the output of MTTESC (see parts a) and b)).

4-60

MC 63-4

Other Programs used by MTTEST

MTTES4--routine which processes all external traps to location 4.
MTTES4 checks to see if an external trap took control from MTTEST

(before MTTEST had time to disable the machine). If control was in-
terrupted from location 1, MTTEST, MTTEST + 1, MTTEST + 2
MTTES4 performs all of the duties of MTTEST and stores in location
3 the address in the Mercury system to which MTTEST would have
returned had it not been interrupted. Control is then given to MORTCC,
the Mercury external trap processor. In this way, every transfer
trap is processed before control is returned to the Mercury tracking

system.

b) MTTESA--routine which processes all channel A traps. MTTESA
checks if a channel A trap took control from MTTEST (before MTTEST
had time to disable the computer). After performing the same opera-
tion as MTTES4, MTTESA transfers to the correct trap processor
specified by the cell MXCHNA.

c) MTTESB--routine which processes all channel B traps. MTTESB
processes channel B in a way entirely similar to the way MTTESA
processes channel A.

d) MTTESC--routine which processes all channel C traps.

e) MTINIT--initializing routine. MTINIT receives control from the real

time initialization program MOINIT and sets up all trap control loca-
tions with the correct trap transfers. It dynamically changes all
those programs which are in core initially and which reference the
trap control locations 1, 4, 11, 13, or 15. MTINIT then sets ZZZETM
to nonzero to indicate the transfer trap mode, enters the transfer trap

mode, and trap transfers to MOPRIO.

4.6.3 Method

As long as the Mercury system is in the transfer trap mode, MTTEST re-

ceives control (by way of a trap) every time a transfer instruction is executed.
In the case of a conditional transfer instruction (TIX, TNX, TXH, TXL, TOV,

TNO, TPL, etc.), the transfer trap occurs only if the transfer condition is
met.

Every time MTTEST receives control it checks the error condition under
investigation. If the error condition is present, the computer halts (HTR*).
At this point a dump should be taken. Location ZZANS in MTTEST will con-
tain the location of the transfer instruction at which the error was detected,
and Z ZLAS will contain the location of the transfer instruction executed

previously.

4-61

MC 63-4

The error condition is also checked every time an external trap or a chan-

nel trap occurs. Since MTTEST receives control on every trap (its routines
MTTES4, MTTESA, MTTESB, and MTTESC receive control on external and
channel traps) it can always finish processing a transfer trap before another
transfer trap occurs. With this method, the error condition can be checked
every 4 or 5 instructions (assuming this is the average span between transfer
instructions) throughout the entire real time system.

There are, however, restrictions to this method of debugging. First,

using MTTEST changes the time requirements of the real-time programs by,
at times, a factor of 10. In the orbit and reentry phases this causes no prob-

lem since there is spare time. In the launch phase, however, the extra time
needed to run the entire system in the transfer trap mode should be limited to
a few "suspected" routines. (Refer to the description of the cell ZZZETM
under Input Requirements for the method of effecting this.)

The other restriction to the use of MTTEST also lies with timing. If the

nature of the error is such that it only occurs when certain routines are exe-
cuted in a precise time sequence, the error might not occur when the machine
is in the transfer trap mode and the time sequence has changed.

4.6.5 Usage

To use MTTEST, the programmer must write the instructions for the
particular test that he wishes to perform. IR 2, the AC, the OV/UN indicator,
and the Sense indicators are saved by MTTEST. All other registers and in-
dicators used by the programmer's test instructions must be saved and restored

by the test program. The test program must follow the MTTEST deck.

If no error condition is found, the program should transfer to "1, 4" to
return to normal program flow. If an error is found, the test program should
transfer to "ERROR". Note: Locations 4, 11, 13, and 15 are changed by
MTTEST so that:

Location 4 contains TTR MTTES4

Location 11 contains TTR MTTESA

Location 13 contains TTR MTTESB

Location 15 contains TTR MTTESC

4-62

MC 63-4

Example 1. To determine which instructions changelocation 4.

MTTEST

DECK

TEST

CLA 4

CAS TEST

TRA ERROR

TRA 1,4
TRA ERROR

TTR MTTES4

Whena changein location 4 is detected, the program will come to a halt (HTR*).
Whena dump is taken, location ZZANS in MTTEST will contain the location of
the transfer instruction at which the error was detected and ZZLAS will contain
the location of the transfer instruction that hadbeen executedpreviously. There-
fore, the instructions that causedthe error will lie between the location to which
the transfer instruction (designatedby location ZZLAS) was transferring and
the location in ZZANS. With this method the error can usually be narrowed to
4 or 5 instructions, andthe routine causing the error will always be detected
since control cannotleave a routine except with a transfer instruction.

Example 2. To determine which transfer instruction transfers to the
routine MOENDS. MOENDSis followed by the routine MOPANL.

MTTEST

DECK

A

SXA A, 4

TSX ZZABS, 4

TXL A, 2, MOENDS-1

TXL ERROR, 2, MOPANL-1
AXT ** 4

TRA 1, 4

ZZABS is a subroutine which computesthe absolute {effective) address to which
the transfer instruction {which causedthe trap) is transferring. The subroutine
takes into account indirect addressing and index modification and stores the
absolute address in IR 2.

Whenthe program finds a transfer instruction that transfers to or into
MOENDS,it will halt disabled (HTR*). Whena dump is taken, location ZZANS

4-63

MC 63-4

in MTTEST will contain the location of the transfer instruction transferring to
MOENDS.

To execute MTTEST, the MTTEST program andthe test instructions should
be placed in the Moddeck for MXMRGE and everything else shouldproceed as
in a normal run. Whenthe program finds the error condition present it will
halt disabled (HTR*). At this point a dump shouldbe taken.

Since MTTEST is altered into the compilation, care must be taken that the

MTTEST deck corresponding to the correct compilation is used. If a new com-
pilation is being used, the existing alter numbers in the MTTEST deck must be

updated to correspond with the new compilation. Wherever possible, CHANGE
cards have been used to reduce the updating process.

a) Storage Required--201 locations. Thirty-six of these locations (the
MTINIT program) are erasable immediately after initialization of the

Mercury real time system.

b) Time Required:

1) MTTEST: maximum--. 168 millisecond

minumum--. 139 millisecond

2) MTTES4, MTTESA, MTTESB, or MTTESC (all require the same

amount of time) : maximum--. 241 millisecond

minimum--. 213 millisecond

3) MTINIT (Only executed once at initialization):

• 081 millisecond

4-64

MC 63-4

NO

MTT
 O,D

CUR FROM 1

P PROCESSOR J

MCPROC E 0J

I YESq

I LEAVE TRANSFERTRAPPING MODE

(SAVE MACHINE

CONDITIONS)

(COMPUTE RETURN)

ADDRESS) /

{ (T EsTZZ;:SErRR OR_"
CONDITION) /ER

NO ERROR

J SAVE

LOCATION 0

IN ZZLAS

ZZ!TN _//

L

I DISABLE

ALL CHANNEL

AND EXTERNAL

INTERRUPTS

ERROR +

J SAVE LOCATION0 IN ZZANS

d ALSO RETURNS

MACHINE TO

TRANSFER TRAPPING

MODE

ZZOUT

,sMACH,NE
IN INHIBITED J

MODE I
MCPROC _ 0

ZZP2

/RETURN\
/'TO LOC.

/WHERE

I TRANSFERI
\ TRAP /

AT THIS HALT EITHER:

1) A FULL SYMBOLIC DUMP SHOULD

BE TAKEN -

OR,

2) IF A DUMP IS ALREADY AVAILABLE

THE TWO LOCATIONS FOLLOWING

THE HTR SHOULD BE EXAMINED

FROM THE CONSOLE. THE FIRST

LOCATION IS ZZANS AND THE

SECOND IS ZZLAS (SEE PROGRAM

DESCRIPTION)

NO

F WASTHE
j' MACHINE ENABLED _ NO

WHEN TRANSFER

_. TRAP OCCURRED J "
. MCTRAP : 0

ENABLE]COMPUTER

i

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet 1 o[9)

4-65

MC 63-4

ZZWOW

SUBROUTINE

1) CHECKS TO SEE IF A DCC

OR CHANNEL TRAP GAINED

CONTROL FROM MTTEST

2) CHECKS FOR ERROR

CONDITION

ZZWOW_

I SAVE XR4

ZZFIN

CONTROL TRAPPED
FROM LOC. 1, ETC.

ZZPPP

OMPUTE RETURN /

ADDRESS) /

ZZTEST

(TEST FOR ERROR/

CONDITION) /

(COMPUTE

ABSOLUTE

RETURN

ADDRESS)

[

CHECK TO SEE

IF CONTROL TRAPPED

FROM LOCATION

1, MTTEST, MTTEST +

OR MTTEST + 2

/
/

/

/
/

/
/

/

CONTROL NOT_RAPPED

FROM LOCATION 1, ETC.

RESTORE XR4

NORMAL

RETURN

CALLING SEQUENCE

TSX ZZWOW, 4

INPUT:

CONTENTS OF TRAP CONTROL

LOCATION IN ACCUMULATOR.

I.E. CONTENTS OF LOCATIONS

3, 10, 12, OR 14.

OUTPUT:

IF CONTROL WAS TRAPPED

FROM LOCATION 1, MTTEST,

MTTEST + 1, OR MTTEST + 2;

THE EFFECTIVE ADDRESS IN

THE TRANSFER INSTRUCTION

(INDICATED BY THE ADDRESS

OF LOCATION 0) IS STORED

IN XR2

STORE CONTENTS

OF LOCATION 0 IN

ZZLAS

RESTORE XR4

SPECIAL RETURN

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet 2 of 9)

4-66

MC 63-4

ZZSVE /

SUBROUTINE
SAVES ALL MACHINE

REGISTERS USED

BY MTTEST

CALLING SEQUENCE

TSX ZZSVE, 4

RETURN IS TO 1, 4

BEFORE GOING TO ZZSVE

THE CONTENTS OF XR4

ARE SAVED IN ZZXR4

ZZRTN /

SUBROUTINE
RETURNS ALL

REGISTERS SAVED BY

ZZSVE

CALLING SEQUENCE

TSX ZZRTN, 4

RETURN IS TO 1, 4

ZZSVE(_

SAVE AC IN

LOCATIONS
ZZACA AND

ZZACB

SAVE SENSE
INDICATORS IN

ZZIN

SAVE OVERFLOW]

CONDITION

(SET ZZXR4
MINUS IF

OVERFLOW ON)

SAVE XR2

IN DECREMENT

OF ZZXR4

ZZ RTN_

IF SIGN OF ZZXR4 IS

NEGATIVE, TURN ON
OVERFLOW INDICATOF

AND SET ZZUOV

NON-ZERO

RESTORE AC I

FROM ZZACA
AND ZZACB

SHOULO
OVERFLOW _YES

INDICATOR _-_,-
BE ON

zzuov _ 0

NO

TURN OFF

OVERFLOW

INDICATOR

'SHOULD
CHINE BE _ NO

RANSFER _
RAP MODE_

ZZZETM J 0 J

YES

ENTER

TRANSFER TRAP

MODE

RESTORE

XR2

1
RESTORE

SENSE

INDICATORS

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet3 o[9)

4-67

MC 63-4

ZZPPP

SUBROUTINE

COMPUTES CORRECT

RETURN ADDRESS FOR

MTTEST, MTTES4, MTTESA,

MTTESB, AND MTTESC

ZZPPP

LOAD SENSE
INDICATORS WITH

TRANSFER INSTRUCTION
FROM WHICH

TRAP OCCURRED

CALLING SEQUENCE

TSX ZZPPP, 4

RETURN IS TO I, 4

I) INPUT: LOCATION 0 MUST

CONTAIN ADDRESS OF
TRANSFER iNSTRUCTION

FROM WHICH TRAP

OCCURRED

2) OUTPUT: THE CORRECT

RETURN ADDRESS (WITH CORRECT

INDEX MODIFICATION AND

INDIRECT ADDRESSING) IS
STORED IN ZZP2

IF THE TRANSFER
INSTRUCTION IS A

TXI, TIX, TNX, TXH,

OR TXL, THE INDEX
REGISTER SHOULD BE

IGNORED IN COMPUTING
THE EFFECTIVE ADDRESS

//
ZZP '_' f!

,,_s THETRANSFER_ ,"
f ,NDEXTESTT,PEV NO
\ OF INSTRUCTION/

PREFIX J 0 ._

ZZP1 _ YES

CLEAR ALL OF
TRANSFER

INSTRUCTION
EXCEPT ADDRESS

IL
ZZPI + 2 _l'"

CLEAR INSTRUCTION I

PART OF TRANSFER

INSTRUCTION \
BITS 5 THRU II \

'

L

f WASTHE"X
YES {TRANSFER INSTRUCTION l

_, ATSXTYPE I
CODEoo7_oo...../

ZZP5 _ NO

S THE TRAP FROM
NO /'AN EXECUTE OF

J A TRANSFER I
INSTRUCTION /

CODE 052200 J

STORE CORRECT I

ADDRESS TOGETHER

WITH TTR INSTRUCTION
IN ZZP2

\

\\\l THIS RETAINS THE

I INDIRECT ADDRESS AND

TAG BITS IF THEY ARE

PRESENT

YES

I LOAD SENSE

INDICATORS WITH
TRANSFER INSTRUCTION

REFERRED TO BY

EXECUTE INSTRUCTION

!

FIGURE 4- 7. MTTEST PROGRAM FLOW CHART (Sheet 4 of 9)

4-68 i

MC 63-4

ZZFIN SUBROUTINE 1

DETERMINES IF A DCC OR

CHANNEL TRAP OCCURRED
WHILE A TRANSFER TRAP

WAS BEING PROCESSED

ZZFIN

WAS CONTROL

TRAPPED FROM

LOCATION I

No

_ WASCONTROL_"_ YES
TRAPPED F ROM _'_"-,,_-_,

LOCATION MTTESTJ

, _ No

_______ WAS CONTROL _'_ YES
TRAPPED FROM

LOCATION /

MTTEST + 1

_, NO

WASCONTROL I
TRAPPED FROM

LOCATION) -I

MTTEST+ 2 / I

RETURN

CALLING SEQUENCE

TSX ZZFIN, 4

1) NORMAL RETURN: 1, 4

2) SPECIAL RETURN (INTERRUPT
OCCURRED WHILE MTTEST

HAD CONTROL): 2, 4

INPUT: LOCATION FROM
WHICH DCC OR CHANNEL

INTERRUPT OCCURRED

IN ADDRESS OF AC

p ZZTEST SUBROUTINE

ERFORMS ERROR TESTS\

WHICH ARE PROVIDED)--- --
BY THE PROGRAMMER /

FOR HIS SPECIAL CASE /
/

SPECIAL

RETURN

CALLING SEQUENCE

TSX ZZTEST, 4

1) NOR.ktAL RETURN:

LOCATION1,4

2) ERROR RETURN:

LOCATION ERROR

ZZTEST_

NOP

' ERROR

J PERFORM SPECIFIC I

TESTS THAT ARE I DETECTED

PROVIDED BY THE I I

PROGRAMMER I [I / NO ERROR

i/i/// _ETECTED (_

/
/

/

THE PROGRAMMER MUST REMEMBER THAT

ONLY XR2, THE AC, THE OV/UN

INDICATOR, AND THE SENSE INDICATORS
ARE SAVED BY MTTEST. ALL OTHER
REGISTERS AND INDICATORS USED BY THE

PROGRAMMER'S INSTRUCTIONS MUST BE
SAVED AND RESTORED B Y HIS TEST

PROGRAM.

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet 5 of 9)

4-69

MC 63-4

ZZABS

SUBROUTINE
COMPUTES ABSOLUTE

(EFFECTIVE) ADDRESS

REFERRED TO IN THE

LOCATION ZZP2

ZZABS (_

J SAVE XR4

1
RESTORE XR4

TO STATUS AT

TRANSFER TRAP

CALLING SEQUENCE

TSX ZZABS, 4

RETURN IS TO 1, 4

1) INPUT: ZZP2 MUST

CONTAIN A TTR TO

THE ADDRESS DESIRED

(THIS ADDRESS MAY
BE INDIRECT AND

INDEX MODIFIED)

2) OUTPUT: THE ABSOLUTE

(EFFECTIVE) ADDRESS

REFERRED TO BY THE

INSTRUCTION IN ZZP2

WILL BE IN XR2

/
/

ZZP2 IS THE OUTPUT OF THE

ZZPPP SUBROUTINE AND

CONTAINS A TTR INSTRUCTION

TO THE CORRECT RETURN ADDRESS

THIS ADDRESS CAN BE INDIRECT

AND INDEX MODIFIED. IT IS

THE PURPOSE OF THE ZZABS PROGRAM

DOESTHE
INSTRUCTION IN

ZZP2 CONTAIN]
INDIRECT ADDRESSINC_

YES

OBTAIN INSTRUCTION

REFERRED TO BY

ADDRESS AND TAG

OF INSTRUCTION

IN ZZP2

ZZAB1 _

COMPUTE EFFECTIVE I

ADDRESS IN INSTRUCTION

OBTAINED WITH _- ...

REGARD TO INDEX

I¢_)01FICAT ION

J PLACE ABSOLUTE J
(EFFECTIVE) ADDRESS

IN XR2

/
/

NO

ZZAB3

l RESTORE XR4

TO COMPUTE THE EFFECTIVE ADDRESS

ZZAB2

OBTAIN

INSTRUCTI CN

IN ZZP2

"-.= ,.,..

THE EFFECTIVE ADDRESS

IS COMPUTES BY

ADDING THE TWO'S

COMPLEMENT OF THE

INDEX REGISTER(S) _

(WHICH MODIFY THE

ADDRESS) TO THE

ADDRESS IN THE

INSTRUCTION

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet 6 of 9)

4-70

MC 63-4

MTTE_

LEAVE

TRANSFER

TRAPPING MODE

4,

(zzsvE)(SAVE MACHINE

CONDITIONS)

SET UP

INPUT TO
ZZWOW

4,

/) _P'_c,,,,-
ZZWOW RETURN

(MAKE ERROR

CHECKS)

NORMAL L

RETURN 'r J

/ ZZRTN

_ (RESTORE MACHINE ;_

_ CONDITIONS) /

1
SET INDICATOR
THAT MACHINE

IS INHIBITED
MCPROC ;_ 0

CONTROL WAS

TRAPPED FROM

LOCATION 1,

MTTEST,
MTTEST + 1, OR

MTTEST + 2

I

I
I
I

SET LOCATION 3
TO EFFECTIVE

ADDRESS IN THE

TRANSFER INSTRUC-
TION WHERE TRAP

OCCURRED

THE CORRECT
TRAP PROCESSOR

IS DETERMINED

FROM THE CELL

MXCHNA

LEAVE

TRANSFER

TRAPPING MODE

(zzsvE}(SAVE MACHINE

CONDITIONS)

1
SET UP

INPUT TO

ZZWOW

zzwow}(MAKE ERROR

CHECKS)

NORMAL I

RETURN

1

R ZZRTN '

ESTORE MACHINE _

CONDITIONS) /

SET INDICATOR
THAT MACHINE

IS INHIBITED
MCPROC # 0

SPECIAL

RETURN

SET LOC.]0

TO EFFECTIVE
ADDRESS IN TRA

INSTRUCTION WHERE
TRAP OCCURRED

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet ? o[9)

4-71

MC 63-4

MTTET_s_ MTTESC_

LEAVE TRANSFER

TRAPPING MODE

zzsvE}(SAVE MACHINE

CONDITIONS)

1
SET UP

INPUT

TO ZZWOW

{ zzwo.}(MAKE ERROR

CHECKS)

NORMAL

RETURN

SPECIAL

RETURN

SET LOC. 12

TO EFFECTIVE

ADDRESS IN TRA

INSTRUCTION

WHERE TRAP

OCCURRED

ZZRTN

RESTORE NIACHINE /

CONDITIONS) /

I SET INDICATOR

THAT MACHINE

IS INHIBITED
MCPROC _ 0

LEAVE TRANSFER

TRAPPING MODE

/ zzsvE}(SAVE NLACHINE

CONDITIONS)

SET UP

INPUT

TO ZZWOW

THE CORRECT TRAPI

PROCESSOR IS J

DETERMINED FROM

THE CELL MXCHNB

/lITHE CORRECT TRAPI
/ I PROCESSOR IS I

/ I DETERMINED FROM I\

/ I THE CELL MXCHNC I _\

ZZWOW /
(MAKE ERROR

CHECKS)

NORMAL

RETURN

<R ZZRTN

ESTORE MACHINE/

CONDITIONS) /

SET INDICATOR

THAT MACHINE

ISINHIBITED

NEPROC_O

SPECIAL

RETURN

SET LOC. 14 TO

EFFECTIVE ADDRESS

IN THE TRANSFER

INSTRUCTION

WHERE TRAP

OCCURRED

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet 8 of 9)

4-72

MC 63-4

MTINIT

INITIALIZE TRAP CONTROL

LOCATIONS FOR MTTEST

I) TTR TO MTTEST IN

LOCATION I

2) TTR TO MTTES4 IN

LOCATION 4

3) TTR TO MTTESA IN

LOCATION 11

4) TTR TO MTTESB IN

LOCATION 13

5) TTR TO MTTESC IN

LOCATION 15

DYNAMICALLY CHANGE

ROUTINES (MYMESS, MYSTLT, ETC.)

THAT REFER TO THE TRAP

CONTROL LOCATIONS SO THAT

THEY WILL GIVE THE

MTTEST PROCESSORS

CONTROL OF ALL TRAPS

SET ZZZETM

NON-ZERO TO

INDICATE TRANSFER

TRAP MODE

ENTER TRANSFER I
TRAPPING

MODE

ONLY THE ROUTINES THAT ARE

INITIALLY LOADED CAN

BE DYNAMICALLY

MODIFIED. ALL OTHER

ROUTINES MUST BE

ALTERED IN THE

COMP ILA T ION

IF A PROGRAM IS NOT TO

BE EXECUTED IN THE TRANSFER

TRAPPING MODE IT WOULD

STORE ZERO IN ZZZETM AND

LEAVE THE TRANSFER TRAPPING

MODE ON ENTRANCE.

ON EXITING, THE PROGRAM

WOULD SET ZZZETM NON-ZERO

AND ENTER THE TRANSFER

TRAPPING MODE

FIGURE 4-7. MTTEST PROGRAM FLOW CHART (Sheet 9 of 9)

4-73

MC 63-4

4.7 PROGRAM TO WRITE THE ISOLATED WRITER PORTION OF THE B4

TAPE (WRTB4 T)

WRTB4T writes, and permits modifications to, the first three files on the
B4 tape which contain programs used to write the operational Mercury system
tape.

The flow chart for WRTB4T is not shown because of its simplicity.

4.7.1 Input Requirements

Input to WRTB4T is the complete MXSTWl program.

4.7.2 Output Requirements

Output from WRTB4T is the first three files of the B4 tape. The first file
of two records--one has the self-loading instructions for MXSTWl, the other has
the MXSTWl program; the second file contains the single-record MXLOAD pro-
gram; and the third file consists of error-correcting and printing programs.

4.7.3 Method

WRTB4T is entered by SOS with the loading subroutine HBLEW after MXSTWl

has been loaded into core. WRTB4T writes the files on B4 and halts with 777768
in the AC.

4.7.4 Usage

WRTB4T is entered from HBLEW and halts with 777768

Storage required--27 locations.

in the AC.

4-75

MC 63-4

4.8 PROGRAMTO WRITE DUMPINGPORTIONOF B4 TAPE (HOMER)

HOMERwrites, andpermits modification to, the dumping programs on the
B4 tapeused during the execution of the Mercury operational system.

The flow chart for HOMERis not shownbecauseof its simplicity.

4.8.1 Input Requirements

Input to HOMER includes anSOSSYSMITtape produced from a dual com-
pilation dumping deck. Also, the first three files of the B4 tape must have been
written by WRTB4T.

4.8.2 Output Requirements

Outputfrom HOMERconsists of the following files on the B4 tape:

a} Fourth file--SOS IBMONITORand SNAP

b) Fifth file--SNAPOR

c) Sixth file--DUAL DUMP CORINGand SNAP, origined at 3000

d) Seventhfile--DUAL DUMP CORINGand SNAP, origined at 30

4.8.3 Method

HOMER andWRTB4T write the entire B4 tape. HOMERis part of the B1
tape and is entered from SOS. Whennecessary, HOMERrewinds the B4 tape,
then spaces the first three files before writing the dumping programs./ The
dumping programs are read from the B1 SYSMITtape and are rewritten on the
B4 tape in executable format.

4.8.4 Usage

HOMERis entered from and exits to SOS.

a) Storage Required--ill locations

4-77

MC 63-4

b) Erasable Locations--

1)

2)

3)

4)

SOS IBMONITOR and SNAP--0 to 56728

SNAPOR--132258 to 134238

DUAL DUMP CORING and SNAP--56708 to 114768

DUAL DUMP CORING and SNAP--368 to 14138

c) Time Required--depends on reading and writing times

4-78

D

D

MC 63-4

4.9 ISOLATED DUMPING PORTION OF B4 TAPE (ISODMP)

ISODMP, files 4 through 7 of the B4 tape, consists of a number of separate
programs used to produce a symbolic dump of the Mercury operational system.

The flow chart for ISODMP is shown in Figure 4-8.

4.9.1

a)

b)

c)

d)

First Entry

Second Entry

Input Requirements

A file of dictionaries for N jobs must be contained on the Mercury

system tape.

AC--contains location of TMCORE.

MQ--contains location of TMENDS (a table containing machine con-

ditions at time of request for dump).

TMCORE--a variable length table listingthe location and status of all

programs in storage. This table is built and maintained by MXLOAD,

MYBUFR, and MYRSYS; and each fileon the system tape is defined in
in the table with three entries:

P D T A

MZE

PZE

PON

LCXXXX
Job

No.

i

Six characters
LCXXXX

FCXXXX

(BCD)

A
[

I B core address forThird Entry 1 buffered program

where the first entry is defined:

MZE--file in A core

PZE--file in B core

PON--file on tape

LCXXXX--last location + 1 of file

Job No.--compilation (job) NO.

FCXXXX--first location (origin) of file

4-79

MC 63-4

4.9.2 OutputRequirements

Final output from ISODMPis produced on A2.

4.9.3 Method

The ISODMPprograms are loaded by SGENDX, which first writes all of
core on B5 andthen loads the seventhfile of the B4 tape (the DUALDP and
CORINprograms) beginning at location 00036. DUALDP is initialized and, in
turn, it modifies the SOSprogram SNAPso as to establish entries to dumping
programs required for subsequentoperations. After modifying SNAP, DUALDP
proceeds to dumpthe A and B cores of the 65K unit.

NOTE

Files 6 and7 of the B4 tape contain nearly identical DUALDP and CORIN
programs; in addition, file 6 has the SOSSNAPprogram. The file 6 SNAP
program, however, is read into a different area from that used by the SOS
version, andpermits dumping of core below location 3000. File 7 is used
with the SOSSNAPprogram contained in file 4.

The symbolic dump is basically the same for dual and multi-compiled
systems; however, some differences exist and are described in the following:

Dual Compilation

The DUALDP program, in file 7, writes snaps of Job 1 on B2 and of Job 2
on B10. The program then writes the dictionaries for Job 1 and Job 2 on tapes

B1 and B3, respectively, and halts. The SNAPTRAN program from SOS is
entered, correlates the B1 and B2 tapes with their dictionaries, and records
the results on A2.

Multi-Compilation

DUALDP, in file 7, dumps selected areas of storage on B2, reads the
dictionaries from the Mercury system tape, and then halts. SNAPTRAN is
entered, correlates the information, and records the results on A2.

In both dual and multi-compiled systems, DUALDP first dumps areas from
3000 to 32767. After these areas have been dumped, control is given to BSNAP
to dump B core. BSNAP is a subroutine in the CORIN program and dumps the

B-core portion of the Mercury system. When BSNAP has finished processing
B core, control is returned to DUALDP in file 7. DUALDP reads in file 6,

starting at location 3000, and gives control to the DUALDP program contained
in file 6. This version of DUALDP loads the first 3000 words from the B5 tape

4-80

MC 63-4

back into storage, starting with location 0. (This data was replaced by programs
needed for dumping and is now returned to storage to be processed.) This area
(0-3000) is then cored and control is returned to DUALDP which reads in file 4
of the B4 (containing SOS IB MONITOR and SNAP). Control is then transferred
to programs in file 4.

4.9.4 Us age

ISODMP is initialized manually at the computer console:

a) To obtain a final Mercury system dump, set SS 6 down and depress
Entry key 2 or manually transfer to 77777.

b) Blank tapes should be mounted on A2, B1, B2, and B5 for multi-
compiled systems; and on A2, B1, B2, B3, B10, and B5 for dual
compiled systems.

c) The standard SOS system tape must be present on channel A, and the
standard B4 tape must be dialed on B4.

d) After dumping has been completed, the program halts. For both dual
and multi-compiled systems, the standard SOS system tape must be
dialed to A1; for multi-compiled systems only, the absolute system
tape must also be dialed to A10.

e) The final stop of a successful dump is 00173--other halts should be
accompanied by an on-line error message from SOS.

4-81

MC 63-4

DUALDP + 1

I
STORE C(AC) IN J
LOCATION TEMMP I

STORE C(MQ) INTO

LOCATION TEMP + 1

STORE ADDR OF TMCORE J

IN LOC. MORST- I AND
LOC. M LKS I

I

J INITIALIZE MORST SUB- J
ROUTINE WITH SYSTEM

ADDR. OF TMENDS

I IINTO AC

(,s,c:c uPPER))
SAVE LOC. 0- 30

IN LOC. XECSl

TO XECSI + 29

SPACE AI SYSTEM

TAPE TO DOUBLE

E.O.F.

CORE2

INITIALIZE I
SNAP COMPILED

WITH DUALDP

INITIALIZE I
SNAP WITH

CORING ADDRESS

EXECUTE "CORE" /

MACRO WHICH
CAUSES SNAP TO

EXECUTE THE

, CORING PROGRAM

l RE-INITIALIZE I
SNAP WITH

SNAP LOCATION

READ IN SOS J
(0- 3000) IFILE 4 ON B4

.I

CONTAINSSYST_M J

ADDR. OF TMCORE
IN ADDR. AND

TMENDSIN DEC

CONTAINS BCII,
UPPER OR IS
A NON-ZERO

NO.

INITIALIZE t t
LOWER SOS

LOCATION

INITIALIZE
SNAP PROGRAM

WITH CORING
ADDRESS

/_XECUTE"CORE'\
/MACRO WHICH WILL \

/ CAUSE SNAP PROG,
\ TO EXECUTE /
\ THE CORING /

PROGRAM /

SPACE THE B4 TAPE 5 l

FILES TO 2ND IDUALDP PROGRAM

LOAD 2ND DUALDP I
& CORING PROGRAM J
STARTING AT LOC. I30001n

+
PUT C(MILK) I

IN AC |

COMMUNICATIONSWORD}_

CORE

FROM

3_0-32K

PUT UPPER

INTO MQ

FIGURE 4-8. ISODMP PROGRAM FLOW CHART (Sheet I o[2)

4-82

CORES ALL THE

ROUTINES IN
"B" CORE ON

SNAP TAPE. EVERY

CORE IS PRECEDED

BY A USE WITH

APPROPRIATE

BCI SYMBOL SO
THAT SNAPTRAN CAN
ATTACH CORRECT
SYMBOLS TO THE CORE DUMP

EXIT ON I
TRA 1, 4

MC 63-4

NO r_

(r, P,CKUPENTRY"_
TH',_T_ORE--"LAST ENTRY]7

. ,NTMCOREj
NO

_i
NO r I

ON SNAP TAPE

TSX Z20A

l

ESTABLISH
COMMUNICATIONS

TSX ZINIT

STEP UP

TABLE SEARCH

ADDRESS

CALCULATE
PARAMETERS

FOR DETAL

l

WRITE DETAIL I

REC ON SNAP TAPE

TSX ZETAL

>

FIGURE 4-8. ISODMP PROGRAM FLOW CHART (Sheet 2 of 2)

I 4-83

MC 63-4

4-84

D
MC 63-4

4.10 DUMP PROGRAM READER (SGENDX)

SGENDX reads the dump program, DUALDP, and the SOS snap file from

the B4 utility tape in preparation for a system dump.

The flow chart for SGENDX is shown in Figure 4-9.

P

4.10.1

a)

b)

c)

Input Requirements

TMCORE--table containing information for the dump program. SGENDX
gives the location of this table to the dump program (the dump processor
cannot reference TMCORE symbolically since the dump program is not

included in the system compilation).

TMENDS--table containing the status of the computer registers at the

time of termination of the run. The registers are saved by MOPANL,

the location of TMENDS is passed on to the dump program by SGENDX,

and TMENDS is used by the dump program so that the computer registers

appear in the dump.

The B4 tape is read by SGENDX to obtain the SOS snap program (file 4)
and the dump program (file 7).

4.10.2 Output Requirements

SGENDX writes the lower core radar blocks on B5 and gives the locations
of TMCORE and TMENDS to the dump program.

4.10.3 Method

SGENDX receives control from MOENDS and immediately disables the com-
puter and deactivates the subchannels of the DCC. The lower core radar blocks
are written on B5 (no longer necessary since MOENDS writes all of lower core

on B5 previous to giving control to SGENDX) and the B4 tape is searched for the
SOS file. When the SOS file is found (the fourth file on the B4 tape), it is read

into lower core. The dump program is then read into lower core below the
SOS program (the dump program is the seventh file on the B4 tape). Me AC
is loaded with the addresses of TMCORE and TMENDS, the MQ is set to non-
zero to indicate a real time run, and control is given to the dump program at
location 30.

4-85

MC 63-4

4.10.4 Usage

SGENDXis entered from MOENDSand exits to DUALDP.

a) StorageRequired--48 locations

b) SGENDXUses:

1) Tables--TMCORE and TMENDS

2) Constant--K00000

3) Tapes--B4 and B5

c) Time Required--0. 096 milliseconds (does not include tape transmission
time)

4-86

_ 6304

SGENDX_

DISABLE ALL

TAPE CHANNELS

AND THE

DCC

DEACTIVATE

ALL SUBCHANNELS

ON THE DCC

,l
WRITE TELETYPE

RADAR BLOCKS

ONTO TAPE

READ IN

SOS (SNAP)

INTO LOWER CORE

+
READ DUMP PROGRAM

INTO LOWER CORE

BELOW SOS

1
PUT THE LOCATIONS OF

TMCORE AND TMENDS

IN THE AC.

+
SET MQNON-ZERO

TOINDICATE REAL

TIME RUN

I

SOS AND THE DUMP

PROGRAM ARE READ

FROM THE [34

MAGNETIC TAPE

(SEE EXTERNAL

PROGRAMS MC 63-4).

LOWER CORE IS

SAVED PREVIOUS TO

THIS BY MOENDS.

FIGURE 4-9. SGENDX PROGRAM FLOW CHART

4-87

MC 63-4

4. ii PROGRAM TO INITIATE TAKING SNAP DUMPS OF THE MERCURY

SYSTEM (CORING)

CORING is contained on the B4 tape and initializes the SOS SNAP program
so that files from different compilations may be snapped on different tapes.

The flow chart for CORING is shown in Figure 4-10.

4.11.1 Input Requirements

Input to CORING includes the location of TMCORE, a variable length table
written by MXLOAD and containing:

a) The A core address of the first and last locations to be dumped.

b) The BCD symbol of the last location + 1 of the file containing the area
to be cored.

c) The B core address of buffered programs.

4.11.2 Output Requirements

Output from CORING includes the USE and CORE macros and a means of

returning control to the main program.

4.11.3 Method

When the CORE macro is entered, control is transferred to CORING. Using
the parameters of the CORE macro, CORING performs a table look-up of TMCORE
to determine which files lie between the core parameters and the compilations
in which these files were compiled. Then CORING converts, if necessary, the
original CORE macro into macros for the individual files contained within the

limits of the original CORE macro. Each of the subcore macros is preceded
by a USE macro with the BCD symbol of the last location of the file. The
necessary instructions to initialize SNAP when successive files are from
different compilations are also provided by CORING. All these instructions
are assembled in a logical fashion, forming a small routine which transfers
control to SOS to perform the actual snaps. The final instruction of this sub-
program returns control to the original program initiating the CORE macro.

4.11.4 Us age

CORING is entered from the CORE macro.

4-89

MC 63-4

b---(

:_0

N

N

I

I--
iv

'I-
U

0
..i
IL

iV
(.-1
0

Z

Iv
C)
U

4
lu

ilL

4-90

ZINIT

PICK UP

LOC. OF

COMMUNICATIONS
TABLE

PICK UP THE
NUMBER OF

ENTRIES IN THE

COMMUNICATIONS
TABLE

STORE A_DR ESSES

OF COMM. REGION

NEEDED BY SNAP
IN SOS FILES OF

THE B4 TAPE

ESTABLISH

TMCORE

LINKS

SET UP LOGIC

TO PREVENT
RETURN TO

ZINIT

INITIALIZE
SNAP

MESSAGES

MC 63-4

FIGURE 4- 10. CORING PROGRAM FLOW CHART (Sheet 2 of 2)

4-91

MC 63-4

4.12 MESSAGE TAPE WRITER PROGRAM (MXWMOT)

MXWMOT prepares the message tape for the Mercury Programming System.

The flow chart for the MXWMOT program is shown in Figure 4-11.

4.12.1 Input Requirements

Input to MXWMOT consists of a deck of data cards, each card containing
one message. The cards must be numbered serially from 1 to 9999 in columns
3-6, right-justified. The symbolic (Hollerith coded) message must be placed
in columns 11-72. Columns 1 and 2 must be blank or must contain zeroes.

4.12.2 Output Requirements

Each message is written as one record on the message tape. The record
consists of 25 words: the first word contains the message number (columns 3-6)
and the remaining 24 words contain the card image of the message (columns
11-72).

Input cards are listed when the execution program, MXWMOT, contains no
modifications--MXWMOT is a standard SOS modify-and-load job in column bi-
nary squoze and may contain modifications. With modifications to MXWMOT
there is no listing.

The card image is printed for any input message card which is not in nu-
merical sequence. If any card is out of sequence, the message tape is invalid
and the program must be rerun.

4.12.3 Method

During the mission the message tape supplies prepared messages on re-
quest from the tracking program. These messages signal significant events
in the mission or mission computations and are printed on-line continuously
during mission operations.

Table 4-1 contains the messages on the message tape, their associated
number, and the processor in which the queue of each message occurs. Most
of the messages are self-explanatory; however, there is an explanation of the
ones that may be doubtful following the message in the list. A detailed dis-
cussion of the messages is included in the Goddard Monitor Programs manual,
MC 63-2.

4-93

MC 63-4

The message(columns 11-72) is read from the card and stored in the last
24 cells of a 25-cell block in core storage. The message number (columns
3-6) is stored in the first cell of the 25-cell block, and the complete block is
written on tapeA6 as one record.

4.12.4

a)

b)

c)

Usage

Operator Procedures:

i) Ready the following tapes:

Tape

A1
A2
A3
A6
B1
B2

For MXWMOT

SOS tape
Blank tape

MXWMOT job tape
Blank tape
Blank tape
Blank tape

After MXWMOT

SOS tape
SOS output tape
MXWMOT job tape
Binary output message tape
Pool tape
Pool tape

2) Ready the card reader with card messages (in numerical sequence).

3) Ready the on-line printer. Press CLEAR and LOAD TAPE buttons.

4) The program stops at 14028. Remove A6 and label.

Error Conditions--if the messages are not in numerical order, those

out of order are printed on-line. If any messages are out of order, the
message tape is invalid and the program should be rerun.

Checkout--in testing the program, the squoze deck without any modi-
fication cards (in which case a printout of all the data cards was given)
was run with three different sets of data. The first data set consisted

of messages numbered 1-12 and a PAUSE card; the second data set
consisted of 1, 2, 811, 4, 5, 1000, 7, 8, 8531, 10, 9999 and 12; and
the third data set, of messages 1-12.

The squoze deck with modifications was run to delete the listing of all
data cards; the program was run with two sets of data cards. The
first set of data cards included messages 1-12; the second set con-
sisted of messages 1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 11 and 10.

Finally, the tapes written by the squoze deck without modifications, in-
cluding messages 1-12 as data, were compared with the tape written
by the squoze deck with modifications. In all cases, the program per-

formed as expected, i.e., when the squoze deck without modifications

I

4-94

MC 63-4

was used, a listing was given of the input cards, and the binary number
associated with each. When the decks with modifications were used,
this listing was deleted. In all cases the card image was printed if a
card was numerically out of order. A check of the tape dumps showed
the two tapes to be identical.

4-95

MC 63-4

I SET COUNTER

CNT = 0

REWIND TAPE

I REAOCARDEROMI
CARD READER INTOJ

BLK + 1 THRU J

BLK + 24 J

R7

CARD AN NO

ND.OF-FILEj

YES

WRITE EN D-OF-

FILE MARK ON
MESSAGE TAPE.

REWIND TAPE

HALT AND

TRANSFER

CONTROL TO

SOSMONITOR

?
i

ROW NO.

BY 1

I

R',
SET:

BLK = 0

CNT = CNT + 1

XR1 = 9

XR4 = l_p

LOOP 1 _

SET: XR4 = 15

EXTRACT BITS

3-6 FROM

LOC. BLK + 17, 2

ARE BITS _YES

3-6

ZERO

;NO

I iR,2,SET

XR4 R4 - 1 XR4 = XR4- 1

COMPARE

I<I B,TS3- 6
WITH

,, TB + 15, 4

_, QUAL TO
TB+ 15,, 4

MULTIPLY XRI BY

TB+ 15, 4ADD

PRODUCT TO BLK

AND STORE IN BLK
L.

NO

SET

XR2 = XR2 - 2

ROW NO. = 1

R6 _YES

CNT = BLK

lNO

J PRINT LOCATIONS

BLOCK + I
THROUGH

BLOCK + 24

J WRITE LOCATIONS

BLOCK THROUGH

BLOCK + 24 ON

MESSAGE TAPE, A6

FIGURE ¢11. MXWMOT PROGRAM FLOW CHART

4-96

MC 63-4

TABLE4-1. ON-LINE MESSAGES

(Sheet 1 of 8)

MESSAGE
NO. MESSAGE USED BY

1 to 17 (Station/Radar Type) has begun transmission MFTTIN

18 Watertown Verlort has begun transmission MFTTIN

19 Huntsville Verlort has begun transmission MFTTIN

20 to 22 System tape channel (x) not in ready-next channel being used MYRSYS

23 This is last vector in orbit table (last vector in orbit table is

printed when current time threatens to exceed this table)

This is message No. 24

Time to fire reentry table not reach 60,000 ft.

This message indicates failure to complete time to fire
calculations and the probable absence of a complete set
of updated recommended retro times.

Sense Switch 2 down, in keys

If the address of the keys, as specified in the message,

contains zero, all differential correction will be bypassed

until Sense Switch 2 is reset. If address of the keys contain

an internal station number, the differential correction for

that station only will be bypassed.

Error in integration. Previous table requested.

(The integration in process has failed to converge and

previous table has been requested. It is printed on an

error return from the Integration routine.)

Inserted R

Inserted V

Inserted time in hrs. mins. secs.

GMTRC for end of present orbit in hrs. mins. secs.

This is the computed time to fire retros (GMT) to impact

in a specified area for the present orbit.

Manual insertion liftoffin hrs. mins. secs.

Manual insertion accepted, number of retros fired

Manual insertion accepted, clack reading read

Manual insertion rejected, enter the message again

Abort table has been generated

24

25

MFORMC

MFRARF

26 MPDIFC

27 MFCPNI

28 MFMAN5

29 MFMAN5

30 MFMAN5

31 MFRARF

32 MFMANI

33 MFMAN2

34 MFMAN3

35 M FMAN I

36 MFCPN I

4-97

MC 63-4

TABLE 4-1. ON-LINE MESSAGES

(Sheet 2 of 8)

MESSAGE
NO. MESSAGE USED BY

37 Abort table reached 60,000 feet MFCPN1

38 Reentry table did not reach 60,000 feet MFCPN1

39 Number of observations presented to differential correction MFLED1

by edit is

40 Floating-point trap MTFLPT

41 Simulated operation begun MOSENT

42 Normal operation begun MTWWV1

43 File project tape on B6 and set up new reel MYSTLT

44 File project tape on B7 and set up new reel MYSTLT

45 Differential correction rejected MFDIFC

On-line messages (45 and 46) will be followed by a number

of lines of print indicating the quality of the data that was

used in the Differential Correction. If message number

45 is printed without the following lines of print indi eating

the quality of the data, this indicates an error condition or

insufficient input data.

46 Differential correction successful MFDIFC

47 T-BDA MFHOLD

48 to 64 (Station/Radar Tape) has ended transmission MFTTIN

65 Watertown Verlort ended transmission no. obs.= MFTTIN

66 Huntsville Verlort ended transmission no. obs. = MFTTIN

67 Time of apogee in hrs., mins., secs. MFORMC

(This message indicates the time of maximum I R I

vector within the next op minutes of Integration Table.)

Lamda 0 accepted.

ACP. TTFW =

Lamda 0 accepted.

updating

D C rejected. R, V not in table

(This indicates that current Integration table does not
cover D C interval.)

68 Station characteristics tape has been updated MFMAN 3

69 PA --. RW = M FMAN I

70 Read in station characteristics tape for MFMAN 3

71 MFDIFC

4-98

MC 63-4

TABLE 4-1. ON-LINE MESSAGES

(Sheet 3 of 8)

MESSAGE

NO. MESSAGE USED BY

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 to

110

111

109

Yes, we have no Cape vector today for pan

Desired impact longitude not between ¢ and 2 PI

Manual insertion accepted landing orbit No.

Longitude (Degrees) accepted

Following station has been deleted from differential correction

These messages (76, 77 and 78) are under control of

Sense Switch 4 (see Operating Instructions, MC 63-1) and
indicate that a manual modification is being made to the

Differential Correction processor (DODIFC)

Following station has been restored to differential correction

Message block for following station is negative

Abort phase above TOWS has been entered

Orbit phase has been entered

NI Error type use TTF

R, Vnotin orbit display table at T-- Hrs. Mins. Secs.

Redundancy occurred on MSG, auxiliary tape being used

Station characteristics tape read successfully

Numerical integration successfully completed

(Station/Radar Tape) acquisition data sent

A record has been written on the restart tape

FI.Pt./Oct Rx = Ry = Rz--

MYGEN2

MYGEN2

MFMAN3

MFMAN3

MFTTIN

MFTTIN

MFTTIN

MFLABT

MFLORB

MFCPNI

MFRARF

MTMFSK

MYSCRD

MFCPNI

MYTTOX

MYTTOY

MYTTTOX

MYTTTOY

MTWRRS
MYWRRS

MTWRSI

MFCPNI

MYREST

MFLORB

MFLABT

4-99

MC 63-4

TABLE4-1. ON-LINE MESSAGES

(Sheet 4 of 8)

MESSAGE

NO.
MESSAGE USED BY

112

113

114

115

116

117

118

119

120 to 143

144

145

146

147

148

149

150

151

Anchor time for above R, V values=hrs, rains, secs.

R vector accepted, enter velocity

Velocity vector accepted

Fit. Pt./Oct Vx = Vy = VZ=

Note commencement of pass

GMTRCdisplay Primary Area is Hrs. Mins. Secs.

Apogee, nautical miles (in perigee nautical miles)

Eat. long. impact point (longitude is degrees West)

This message is printed during an abort or reentry phase

only.

(Station/Radar Tape) acquisition data not sent

T-GE

T-IP

Launch Rx = Ry = Rz =

These messages (146, 147 and 148) will give the com-

ponents of the vector used in the launch processors in

determining the GO-NO-GO calculation.

Launch Vx = Vy = Vz =

R, V not in TTF orbit table at T = Hrs. Mins. Secs.

No. of Cape vectors generated forward is

TTF orbit table reached 60,000 feet at Hrs. Mins. Secs.

GMTRC Man. insertion area is Hrs. Mins. Secs.

MYREST

MFLORB

MFLABT

MFCPNI

MFMAN5

MFMAN5

MYREST

MFLORB

MFLABT
MFCPNI

MSPANS

MFRARF

MFORMC

MFCPNI

MYTTOX

MYTTOY
MYTTTOX

MYTTTOY

MFHOLD

MFHOLD

MFLHLD

MFLHLD

MFRARF

MFCPNI

MFRARF

MFRARF

4-100

MC 63-4

TABLE 4-1. ON-LINE MESSAGES

(Sheet 5 of 8)

MESSAGE

NO. MESSAGE USED BY

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Orbit No. of the above vector is

Error in Retrofire program, R6 BOT4 or R6ATAO

New reentry table generated

ID frame compare error

GMTRC NEA completed

Frame sequence error

Line two, low buffer check sum error

These messages (158 through 161) indicate IP 7094 input
line errors.

Line two, high buffer check sum error

Line two, high buffer telemetry rejected

Line two, low buffer telemetry rejected

High-speed output transmission rate to Cape exp., 120, actual

High-speed output transmission rate to Cape exp., 20, actual

High-speed output transmission rate to Cape exp., 10, actual

High-speed output transmission rate to Cape exp., 60, actual

Line one, low buffer check sum error

These messages (166 through 169) indicate B-GE input
line errors.

Line one, high buffer check sum error

Line one, high buffer telemetry rejected

Line one, low buffer telemetry rejected

RSYSERR1 no control or EOF rec after EOF (ETRT2)

These messages (170 through 177) indicate that some error

has occurred when trying to read the absolute System Tape

on tape unit A1.

RSYSERR2, EOF is first rec. read after Rew, spacing files

(ETRT3)

RSYSERR3, data rec. first rec. read after Rew, spacing (ETRT3)

MFDIFC

MFRARF

MFCPNI

MFRARF

MFRARF

10HS09

10HS09

10HS09

10HS09

MTWWWV

MTWWWV

MTWWWV

MTWWWV

10HSGB

10HS GB

10HSGB

10HSGB

MY RSYS

MYRSYS

MYRSYS

4-101

MC 63-4

TABLE 4-1. ON-LINE MESSAGES

(Sheet 6 of 8)

MESSAGE

NO.
MESSAGE USED BY

173

174

175

176

177

178

179

180 to 198

199 to 217

218

219

22O

221

222

223

224

225

226

227

228

229 to 232

233

RSYSERR4,MSREXX err ret-decode file control rec. (ETCWD)

RSYSERR6,MSRECC err ret-decode control rec. after Rew, spacing

RSYSERR7, file no. requested not = file read (ETTS1)

RSYSERR8,MSRECC err ret-decode data rec. (ETECC)

RSYSERR9, data record read too small (ETECC)

Low abort phase has been entered

Medium abort phase has been entered

Differential correction rejected

Differential correction successful

Orbit-reentry phase change accomplished

Time of liftoffis(GMT) in hrs. rains, secs.

N = 0, edit program rejected, differential correction bypassed

N is the number of observations correctly received by the

station presently transmitting. IfN=0, this indicatesa

particular set of low-speed data is not being presented to

the Differential Correction program for processing.

The WWV time entered is (GMT) in hrs. mins. secs.

Escape rockets fired

Tower separation signal has been received

Abort initiate signal has been received

SECO signal received

Spacecraft separation signal received

Spacecraft separation assumed

No good vectors written on the restart tape

No, posigrade rockets fired

B-GE IP 7094

MYRSYS

MYRSYS

MY RSY S

MYRSYS

MYRSYS

MFLRTI

MFLRT2

MFDIFC

MFDIFC

MYREST

MFMANI

MFHS08
MFHSGB

MFML6A

MFLEDI

MTWWVI

MLUPDT

MLUPDT

MLUPDT

MLUPDT

MLUPDT

MLUPDT

MYRRRS

MLUPDT

MFLHLD

4-102

MC 63-4

TABLE 4-1. ON-LINE MESSAGES

(Sheet 7 of 8)

MESSAGE

NO.
MESSAGE USED BY

234

235

236

237 to 249

250

251

252

253

254

255

256

257

258

259

260

261 to 264

265-

266

267

268

BDA

The FDO switch has been changed

Summation of W + N for H.S. BD data is

This is message No. xxx

Neither Restart Tape can be error corrected

An erroneous trap occurred on the DCC, subchannel number

Display table reached 60,000 ft. at hrs. mins. secs.

Splash* GMT exceeds last time entry in reentry table

Reentry table generated based on hrs. mins. secs.

Time restarted from is hrs. mins. secs.

Neither restart tape can be read, insert restart values
This message is printed as a result of restarting the

tracking program. This would occur in case of machine
malfunction. The restart values that should be in-

serted via paper tape (see restart operation, MC 63-1)
are the time of liftoff and the R, V and T values at

time of insertion.

Manual insertion accepted orbit switch

Manual insertion accepted abort switch

Manual insertion retrofire time is hrs. mins. secs.

RSYSERA, data record read too large (ETECC)

This message indicates that some error has occurred when

trying to read the absolute system tape on tape unit A8.

This is message No. xxx

Manual insertion accepted. Setting is hrs. mins. secs.

(Prints the manually inserted spacecraft clock setting.)

This is message No. xxx

RSYSERR, tape check trap. Machine error if system not enabled
This message indicates that some error has occurred when

trying to read the absolute system tape on tape unit A1.

Signal to enter orbit phase has been received

MFHOLD

MPSARC

MFLHLD

MYRRRS
MYSRST

MTERTC

MFCPNI

MFABRT

MFCPNI

MTWWVI

MYSRST

MFMAOS

MFMAOS

MFMAN2

MYRSYS

MFMAN 3

MTRSYS

4-103

MC 63-4

TABLE4-1. ON-LINE MESSAGES

(Sheet 8 of 8)

MESSAGE

NO. MESSAGE USED BY

269 RSYSERR, Loc. 10, bits 13-17, illegal config, prob. machine MTRSYS

error

This message indicates that some error has occurred

when trying to read the absolute system tape on tape
unit A1.

Station characteristics auxiliary tape cannot be read

Signal to enter abort phase has been received

V avg. - V go = in ft. per sec.

Channel (x) in use over 30 seconds. System tapes on next

channel being used

276 AOSTAD output package loaded hrs. mins. secs.

277 O5ORMC package loaded hrs. mins. secs.

278 OOORMCpackage requested hrs. mins. secs.

279 R5RARF package loaded hrs. mins. secs.

280 Integration package requested hrs. rains, secs.

281 D Cpackage loaded hrs. rains, secs.

282 Edit package requested hrs. mins. secs.

283 Restart package loaded hrs. mins. secs.

284 RSYSERRB file requested from SYS tape does not exist.
File =

285 MYREST package loaded hrs. mins. secs.

286 Inserted Delta- T correction B-GE plus hrs. mins. secs.

287 Inserted Delta - T correction B-GE minus hrs. mins. secs.

288 Inserted Delta- T correction I P plus hrs. mins. secs.

289 Inserted Delta- T correction I P minus hrs. mins. secs.

(286 - 289 are printed to indicate the manually inserted

corrections being applied to the respective high-speed

290 Manual insertion rejected, D.C. in process

270

271

272

273 to 275

MYSCRD

MFHOLD

MY RSYS

MYRSYS

MY RSYS

MYLSYS

MY RSY S

MYLSYS

MYRSYS

MLYSYS

MYRSYS

MY RSY S

MY RSY S

MFMAN 4

MFMAN 4

MFMAN 4

MFMAN 4

MFMAN5

4-104

IV.l._ u i.) ---'z

4.13 STATION CHARACTERISTICS TAPE WRITER PROGRAM (UOSTCH)

UOSTCH generates the station characteristics tape for the Mercury Pro-
gramming System. This tape consists of a 34-cell block for each station type
in the Mercury tracking network--a site with both AN/FPS--16 and Verlort
radar units has a separate station characteristics block for each radar. Each
block contains the station identification and geodetic, meteorological, and
other data with affect measurements of the spacecraft orbital position.

The flow chart for the UOSTCH program is shown in Figure 4-12.

4.13.1 Input Requirements

Input to UOSTCH consists of a card deck containing the following cards:

a) Station Number Card--the binary number contained in row 9, columns
1-36 of the first card in the input deck defines the number of station
characteristics blocks to be assembled. If, for example, five station
characteristics blocks are to be assembled, punches must be present
in row 9, columns 34 and 36. Except for the 9-row, this card is blank.

b) Station Characteristics Tape IdentificationCard--the second card is in

squoze format. Itcontains 12 words which supply the identification
record on the station characteristics tape. All words are in BCD for-

mat. Words 1-4 contain the expression STATION CHARACTERISTICS.

Words 5 and 6 contain the date, e.g., 7/1/61. Words 7-9 are blanks.

Word 10 contains the number of stations to be assembled on the tape.
Word 11 is blank. Word 12 contains the number of words in each sta-

tionblock.

c) Station Characteristics Cards--there must be two row-binary cards for
each station to be assembled. If there are less than 25 characteristics,
all of the characteristics are located on the first card and a blank card

must be added to complete the 2-card set. {NOTE: The cards con-
taining the characteristics may be obtained by a 9 AP assembly of the
following symbolic deck: two comments cards, a FUL card, one sym-
bolic card for each characteristic, and an END card. The FUL card

eliminates the checksum from the 9 AP punched-card output.)

4.13.2 Output Requirements

Upon completion of UOSTCH, tapes A7 and A8 contain an 18-word identifica-
tion record and as many other records as there are station blocks. The identifi-
cation record consists of 12 data words and six error correction words. Each

4-105

MC 63-4

station block consists of as many words as there are characteristics and ten
error correction words. An end-of-file terminates the data on the output tapes.

The contents of the station characteristics blocks, and UOSTCH station iden-
tification, are illustrated in Tables 4-2 and 4-3 respectively.

4.13.3 Method

The following equations are used to compute the various listed values for
the station characteristics blocks:

a) InertialLongitude of Station at Reference Time (X i):

k =k+k
1 0

where:

k = geodetic longitude (given)

X 0 = inertiallongtude of Greenwich at reference time (computed

from given date).

Source: American Ephemeris and Nautical Almanac, 1960.

b) Geocentric Latitude (0 '):

(P' =0' - 11'35" .6635 sin2cp + 1" .1731sin4_ - 0" .0026 sin 6(p

where (p = geodetic latitude (given)

Source: American Ephemeris and Nautical Almanac, 1960.

c) Altitude Above Ellipsoid in Earth Radii (H):

Hearth radii = (Hfeet x 0.3048) meters/6378145 meters

Source: Memorandum of Dr. Paul Herget, Cincinnati Observatory.

4-106

I MC 63-4

TABLE 4-2. STATION CHARACTERISTICS BLOCK CONTENTS

Word
No.

1 Prefix: Site Type (0 : AN/FPS-16; 1 : Verlort; 2 : telemetry)
Decrement: Earth Sector Number
Address: DCC Input Subchannel Number

2 Prefix: Other radars at this site (7 : AN/FPS-16; 1 = Verlort; 0 = none)
Address: Internal Station Number

3 DCC Output Subchannel Mask (Subchannel 10=PZE 0,0,16; Subchannel 11=PZE 0,0,8)

4, 5 Station Name
(in BCD)

Item Source

6 Geodetic Longitude (_)
7 Geodetic Latitude (_)
8 Geocentric Latitude (q_')
9 sin

10 cos
11 R s sin (_-_')

12 R s cos (_-_')

13 Radius from Earth Center to Sta. (R s)
14 Altitude above Ellipsoid (H)
15 Local Vertical Deflection

Longitude (A_)
16 Local Vertical Deflection

Latitude (A_)
17 Calibrated Boresight Elevation
18 Calibrated Boresight Azimuth
19 Inertial Longitude at Reference Time
20 Air Pressure at Ground Level (P_)

21 Temperature at Ground Level (T_)

22 Water Vapor Content at Ground

Level (eg)
23 Azimuth Deviation from True North

24 Square Root of Weight 1 (Range)
25 Square Root of Weight 2 (Azimuth)
26 Square Root of Weight 3 (Elevation)
27 Modulus (n-l)
28 R sin (_-c_')
29 R cos (¢-_')
30 sin _"
31 cos _"
32 Boresight Elevation Correction

(C3)**
33 Boresight Azimuth Correction

(C2)**
34 Open for Expansion

Source

Format

Given Dec.
Given Dec.
Computed
Computed
Computed
Computed

Computed

Computed
Given Dec.
Given Dec.

Given Dec.

Given Dec.
Given Dec.
Computed
Given Dec.

Given Dec.

Given Dec.

Given
Given
Given
Given

Computed
Computed
Computed
Computed
Computed
Computed

Computed

Dec.
Dec.
Dec.
Dec.

Source

Unit

DMS* Fit.
DMS* Fit.

Fit.
Fit.
Fit.
Fh.

Fit.

Fit.
Meters Fit.
DMS* Fh.

DMS* Fit.

DMS* Fit.
DMS* Fit.

Fh.
Millibars Fh.

°C Fit.

Millibars Fit.

DMS* Fit.
Fit.
Fit.
Fit.
Fit.
Fit.
Fit.
Fit.
Fit.
Fit.

Fit.

Converted Converted

Format Un it

Pt.
Pt.
Pt.
Pt.
Pt.
Pt.

Pt.

Pt.
Pt.
Pt.

Pt.

Pt.
Pt.
Pt.
Pt.

Pt.

Pt.

Pt.
Pt.
Pt.
Pt.
Pt.
Pt.
Pt.
Pt.
Pt.
Pt.

Pt.

Radians
Radians
Radians
Radians
Radians
Earth Radii

Earth Radii

Earth Radii
Earth Radii
Radians

Radians

Radians
Radians
Radians
Mi Ilibars

oK

Millibars

Radians

Earth Radii
Earth Radii
Radians
Radians
Radians

Radians

*DMS--degrees, minutes and seconds
**Original Input--raw radar reading

4-107

MC 63-4

Internal

Station

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

TABLE 4-3. UOSTCH STATION IDENTIFICATION

Name of Station

Cape Canaveral

Grand Bahama Island

San Salvador Island

Bermuda

Bermuda

Grand Canary Island

Muchea

Woomera

Hawaii

Hawaii

Point Arguel Io

Point Arguel Io

Guaymas

White Sands

Corpus Christi

Eglin

Eglin

Bermuda Computer

Bermuda Computer

Mid-Atlantic Ship

Kano

Zanzibar

Indian Ocean Ship

Canton Island

Earth
Site Type Sector

AN/FPS-16 1

AN/FPS-16 1

AN/FPS-16 1

AN/FPS-16 1

Verlort 1

Verlort 4

Verlort 10

AN/FPS-16 11

AN/FPS-16 15

Verlort 15

AN/FPS-16 16

Verlort 16

Verlort 17

AN/FPS-16 17

Verlort 18

AN/FPS-16 18

Verlort 18

AN/FPS-16 1

Verlort 1

Telemetry 3

Telemetry 5

Telemetry 6

Telemetry 8

Telemetry 14

DCC Subchannel

In Out

14 11

14 11

14 11

17 10

17 10

18 11

19 11

24 11

25 10

25 10

20 11

20 11

26 10

21 11

27 10

22 11

22 11

15 11

15 11

23 10

18 11

18 11

24 11

19 11

Site Name

in

Station Block

0CPCANAVE RAL

0GRANDBAHAMA

0SANSALVADOR

0BERMUDA

IBERMUDA

ICANARI ES

IMUCH EA

0WOOMERA

0HAWAII

I HAWAI I

0PNTARGUELIO

IPNTARGUELLO

IGUAYMAS

0WHITESANDS

ICPUSCHRISTI

0EGLIN

IEGLIN

0BERMUDA

IBE RMUDA

2MIDATLSHIP

2KANO

2ZANZIBAR

21NDIANOSHIP

2CAN TON ISL ES

4-108

MC 63-4

d) Earth Radius Measured from Center to Mercury Ellipsoid (R):

e)

g)

R E = y /1- (2-e 2) e 2sin 2

where:

y 1/ _ 1 e 2 sin 2= - (D

e = eccentricity of earth (computed from e = 5_-_. 6/298. 3, as given

in NASA, Appendix A).

= geodetic latitude (given).

Earth Radius as Measured from Center to Station (Rs):

Rs= _2 + H2 + 2v H(1-e 2sin2_)

where H = Heart h radii and all other terms are as defined previously.

Modulus of Refraction (n-l):

77.6 + 4810e 1
+ g x 10 -6

n- 1 = Pg Tg

where:

P
g

T
g

= air pressure at ground level (given, millibars)

= temperature at ground level (given, OK)

e = water vapor pressure at ground level (given, millibars)
g

Source: Westerman memorandum of 7/31/58.

Boresight Elevation Correction (C3) and Azimuth Correction (C2):

C 2 = A a - KA r

C 3 = E a - KE r

4-109

MC 63-4

4.13.4

a)

b)

c)

d)

where:

A ___

a

E =
a

A =
a

E =
r

K =

Source:

calibrated boresight azimuth (given)

calibrated boresight elevation (given)

azimuth reading (given)

elevation reading (given)

radian conversion factor

Mr. James Donegan of NASA.

Usage

Calling Sequence--UOSTCH is an independent program but may be

used as a subroutine with the following calling sequence:

Location Operation Address, Tag, Decrement

Alpha T TSX UOSTCH, 4

Alpha + 1 Normal return

Error Conditions--two SOS library utilityprograms, UISQRT and
UISICO, are incorporated into UOSTCH as subroutines. An error re-

turn from either of these programs results in a program halt.

Storage Required--639 locations.

Accuracy--26 significantbits.

4-110

,/

MC 63-4

®

uos
GET ONE BINARY
CARD FROM CARD
READER: SPECI FIES
NO. OF STATIONS

BLOCKS TO BE
ASSEMBLED

REWIND
OUTPUT

TAPES 7 & 8

READ NEXT
BINARY CARD

TO SET UP I D
RECORD OF 12

WORDS

\ I.D RECORD /

(MSWECC,) ,/

WRITE I D
RECORD ON

TAPES 7 & 8

UQST --t

IGET THE 2 BINARY

I STATION CHARAC-
I TERISTICS CARDS

I FOR ONE STATION

FIGURE 4o12.

f
u

CALCULATE\
SINE OF \ ERROR

GEODETIC / RETURN

LATITUDE /

f

_ CALCULATE_ =porto

COSINE OF _
GEODETIC /RETURI_

LATITUDE /

l
CALCULATE

GEOCENTRIC
LATITUDE

CALCULATE
MERIDIAN

RADIUS OF
REFERENCE
ELLIPSOID

CALCULATE
EARTH RADIUS
FROM CENTER

TO SEA LEVEL

CALCULATE
EARTH RADIUS

FROM CENTER
TO STATION

t

CALCULATE\

SINE OF \
GEODETIC/ _ERROR .._

GEOCENTRIC / RETURN--tr

LATITUDE/ _,,.'"

U0$TCH PROGRAM FLOW CHART (Sheet] of 2)

4-iii

MC 63-4

MULTIPLY
CALCULATED

SINE BY

R AND Rs

t
_ CALCULATECOSINE OF

GEODETIC/

RETURN_ GEOCENTRICLATITUDE

1
MULTIPLY

CALCULATED
COSINE BY

R AND Rs

1
CALCULATE

INERTIAL
LONGITUDE AT

REFERENCE TIME

_ CALCULATE

SQUARE ROOT
RETURI_ OF WEIGHT]

(RANGE)

1
CALCULATE

SQUARE ROOT

RETURN\ OF WEIGHT 2

(AZIMUTH)

CALCULATE
SQUARE ROOT

RETURN_ OF WEIGHT 3

\ (ELEVATION)

FIGURE 4.12.

L
CALCULATE

MODULUS (N- 1):
N = INDEX OF

REFRACTION OF
TROPOSPHERE

1
CALCULATE

BORESIGHT
AZIMUTH AND

ELEVATION
CORRECTIONS

HAMMING
CODES TO
STATION
BLOCKS

1
WRITE STATION

BLOCK ON
OUTPUT TAPES

7 AND 8

_B ARE MORE

TATIONS TO _

ASSEMBLEDJ

NO, FINISHED

WRITE AN END-
OF-FILE ON

TAPES 7 & 8
AND REWIND

UOSTCH PROGRAM FLOW CHART (Sheet 2.of 2)

4-112

MC 63-4

4.14 STATION CHARACTERISTICS TAPE UPDATING PROGRAM (UOSTUP)

After UOSTCH has generated the station characteristics tape, UOSTUP is
used to insert and/or delete station blocks, delete one or more characteristics

from every block, or alter various characteristics in individual blocks. Up-
dating the station characteristics tape to correspond to the latest available

information is part of the countdown procedure for a Mercury mission.

A general flow diagram and a detailed flow chart for the UOSTUP program
are shown in Figures 4-13 and 4-14, respectively.

4.14.1 Input Requirements

Input to UOSTUP consists of the following items:

a) The station characteristics tape to be updated on A7 and a duplicate
tape in reserve on AS. These tapes are the output from UOSTCH (see
subsection 4.13.2).

b) A card deck of the updating corrections--the first card is an on-line

print control card and is blank except for row 9--a punch in column 30
produces an on-line printout of all station blocks prior to updating; a
punch in column 60 produces an on-line printout of all blocks subse-
quent to updating.

The second card contains the inertial longitude of Greenwich (k 0) at

the reference time. The inertial longitude is given in units of time--
hours beginning in column 1, minutes beginning in column 10, seconds
beginning in column 20, in Hollerith.

The third card contains the date of k 0' coded in Hollerith, e.g., 07/01/

61. The remaining input cards contain Hollerith-coded corrections to
the station characteristics blocks (see Tables 4-4 and 4-5).

c) When inserting a new station number, station numbers following the

new entry must be altered to maintain consecutive numbering. For
example, two new stations inserted between existing stations 5 and 6

and 8 and 9 cause internal station numbers to be changed as follows:

internal station numbers

new internal station numbers

1st 2nd

11

4-113

MC 63-4

TABLE 4-4. FORMAT, STATION CHARACTERISTICS CHANGES

Type

1 Normal Change

2 Deletion of Characteristics

from All Stations

3 Deletion of a Station

4 Insertion of a Station

Card Format

Start in

Column 1

Station

Number

Blank

Station

Number

(most

recent)

Blank

Start in

Column 10

Char. No. 32

must follow 17,
and 33 must

follow 18, for

the same station

Characteri sti c

Number

Blank

Blank

Start in

Column 20

Updating data for an angle:

Col. 20: deg (dec. int.)

Col. 30: min (dec. int.)

Col. 40: sec (mixed number)

(If negative, a minus (-) sign
in cols. 20, 30 and 40)

For P , T ore *, only oneg g g
card is needed to update all
stations at one site. For char-

acteristics 1, 2, 3, 4, 5, 14,

20, 21, 22, 24, 25, 26, 32 and

33, data begins in column 20.

Blank

Blank

Station Number

*Pg--Air Pressure at Ground Level

Tg--Temperature at Ground Level

eg--Water Vapor Content at Ground level

4-114

MC 63-4

TABLE 4-5. CARD SEQUENCE, STATION CHARACTERISTICS CHANGES

Type Remarks
Group Number

1 1 One for each characteristic for each station

Delete a characteristic from all stations

2

(may be

repeated)

3

(may be

repeated)

3

4

1

A new characteristic, if any, for any or all
stations, in place of the deleted characteristic
above.

Delete a station, if any.

Insert a station, if any.

One for each characteristic for this new station.

No card should follow the last updating data card.

4-115

MC 63-4

4.14.2

a)

b)

Output Requirements

On-line Printout:

1) Heading, STATION CHARACTERISTICS

2) The value, X 0' in hours, minutes and seconds

3) Date of)'0

4) Station blocks, before updating, in floating-point decimal form

(optional)

5) Updating station characteristics (input card format)

6) The value, k 0' in floating-point decimal

7) Station blocks after updating in floating-point decimal (optional).
A change on a printout is indicated by an asterisk (*)

8) Ending sentence

UOSTUP provides on-line printouts when specific types of errors are
detected in the execution of the program.

Output Tapes B9 and B10--identical updated station characteristics
tapes.

4.14.3 Method

The equations used by UOSTUP in updating the station characteristics tape
are identical to those used by UOSTCH in generating the original station char-
acteristics tape, exceptfor the equation used to compute the geocentric latitude

(_ '):

cp ' = arctan [(1 - f)2 tan(p]

where:

= geodetic latitude

f = flattening, (1/298.3)

4-116

MC 63-4

4.14.4

a)

b)

c)

d)

Usage

Calling Sequence--UOSTUP is an independent program but may be used
as a subroutine with the following calling sequence:

Location Operation Address_ Tag, Decrement

alpha TSX UOSTUP, 4

alpha + 1 Normal return

Error Conditions--two SOS library utility programs (U1SQRT and

UISICO), an error correction code writing program (MSWECC), an
error correction code reading program (MSRECC), two format con-
version programs (BCD1 and FILE), a card reading program (RCD1)
and an on-line writing program (TOPC2) are all incorporated into
UOSTUP as subroutines. An error return from any of these subrou-

tines results in an on-line printout indicative of the error.

Storage Required--6457 locations.

Accuracy--26 significant bits.

4-117

MC 63-4

READ ENTIRE

STATION

CHARACTERISTICS

TAPE

OETUPOAT,NO\
DATA FROM)

CARD READER/

AREMO_E\
HANGES TO BE

MADE IN /

ATION BLOCK//

NO

WRITE UPDATED

STATION BLOCKS

ON TAPE

YES

1
 o scHAHo
IREQUIRE INSERTION _ YES

OR DELETION OF/

',_TATIONBLO_'

_NO
MAKE CHANGE

IN STATION

BLOCK

DOESCHAN_E\
REQUIRE

ALCULATIONJ

I YES.

CALCULATE

INSERT OR

DELETE ONE

STATION BLOCK

FIGURE 4-13. UOSTUT GENERAL FLOW DIAGRAM

4-118

MC 63-4

uos

GET 1ST CARD /

FROM CARD ERROR
READER FOR

I/O PRINT

CONTROL

UOER

_(ENO-OP-F,LE! ERROR

(_ INDICATION
_ READ J ' ON-LINE

NOT= , I

I REWIND I

TAPES 7 AND 8.

READ IDENTIFI-
CATION RECORD

FROM TAPE 7

I END-OF-PILE_---
k,, READ _

YES

y.. _IS END-OF-FILE_

c_l FOUND WHEN]

/ PRINT ERROR _ --

/ INDICATION\ IN°
(ON-L,NE)

f _ \NO ,,,I_
/ WAS AN _ UOMSR T --

READ / / REMOVE \

\ / IHAMM,NGCODE
_' IYES _ _=:ROM I D RECORD/RETURN

J \ (MSR ECC)J !
UOMSR + 3 - T--

/GET 2ND CARD'_

ERROR /CALCULATE INER'_

_TIAL LONGITUDE/
1If \ OF GREENWICH/UOERC

\ ATTIME,0J

I PR.NT AN)

ERROR

INDICATION

ON-LINE

2/PR,NTON-L,NE\

GREENWICH /

AT TIME tO /

UOERM

 ECOND>_ TRY STILL

PRODUCE

_ ERROR

_ YES

PRINT ERROR /

INDICATION

ON-LINE.
SWITCH TO

TAPE 8

UOTP8

REMOVE\
HAMMING CODE

FROMI D RECORD /

ON TAPE 8 /

PRINT ERROR

iNDICATION

ON-LINE

FIGURE 4-14. UOSTUP PROGRAM FLOW CHART (Sheet 1 of 7)

4-119

MC 63-4

Q
UOERH _"

PRINT ERROR

INDICATION
ON-LINE

I

ET 3RD CARD_
ICH CONTAINS\
DATE OF XO. _ ERROR

()_0 = INERTIAL/
ONGITUDE OF/
.RF ENWICH /

t

_L_J__ END-OF-F_LE!

_ READ J

I NoUOL7A

I READ FIRST

STATION

CHARACTERISTIC

BLOCK FROM TAPE

I

END-OF-FILE YES

READ /

NO }

/ RFMOVE\

\ (MSRECC)/
d

UOERC t

PRINT ERROR _

INDICATION
ON-LINE

1

_/ ,STAPES_YES
(CURRENTLYI-_
\ ,NUSEy

_ No
TRY AGAIN. "_

DOES END-OF- _

E STILL APPEAR_

]Jr YES

UOERN I

YES/'STAPESN_-_ CURRENTLY I

USE

No
TRYAOA,N.\

DOES ERROR

STILL OCCUR J -

WITH TAPE 7 /

YES

I SWITCH

TO TAPE

8

I
=!

, READ(OR",
EREAD) TAPE 8. _ NO

DOES ERROR

PERSIST _/

YES

IS PRINT

INDICATOR
ON

t YES

PR,NT\
TATION BLOCK)

ON-LINE /

READ NEXT 1

STATION BLOCK

FROM TAPE.

YES

/PR,NTON-L,N_
/ XoASA \
_FLOATING-POINT/

\ NUMBER!

SWITCH

TO TAPE
8

___ READ (OR

EREAD) TAPE 8. I

DOES END-OF- J

FILE APP EARJ

YES

FIGURE 4-14. UOSTUP PROGRAM FLOW CHART (Sheet 2 of 7)

4-120

MC 63-4

UOBEG

HAVE 100

YES CARDS OR AN

END-OF-FILE

BEEN READ

UONC

UPDATING CARD

FROM CARD

READER AND

PRINT ON-LINE

PRINT THIS

ERROR

ON-LINE

ERROR
AND STATION

CHAR.NO.) OF CARD

YES IS STATION

NO.=0

DATA) OF CARD

BINARY

INTEGER

> IS STATION <
CHARACTERI!

NO.= 5

CONVERT 3RD CONVERT

DATA) OF CARD TE DATA) OF

HOLLERITH

BINARY BINARY

!
/ ,SSTAT,ON"_

> I CHARACTERISTIC I

\ j
t <

APPLY OCTAL I

CONVERSION TO

3RD FIELD

OF CARD

_O_T.,(ARE)
CHANGES YES

NECESSARY

(_NO

UOPIK ?

PICK UP J
ONE CHANGE

STATION

NO. =0

UOTE1 _ YES

STATION _ NO

ARACTERISTIC/--1

NOdDy I
YES l

DELETE THIS I

CHARACTERISTIC

I I FROMEACH

J J STATION BLOCK

UOTE2 I

INSERT ONE J

STATION BLOCK AND

ADJUST ALL OTHE_ I
I CHANGE INTERNALI
ISTATION NOS. ANOI

ISTATION NANE TABLE]

I

ir

/ ,STHE\
/ STATION
_ CHARACTERISTIC / |

\ HO.-O J J
• NO UOTE3t

IT DELETE ONE J
TATION BLOC3(AND I

D JUST ALL OTHERS. I
CHANGE INTERNAL I

STATION NOS. AND J
ATION N_E TABLEI

t L___

J MAKE CHANGE J

FIGURE 4-14. UOSTUP PROGRAM FLOW CHART (Sheet 3 of 7)

4-121

MC 63-4

UONAM t

I CHANGE TABLE J
J OF STATION

J NAMES

10TRN I
I

IF WEST LONGI- I

TUDE, CONVERT TO I

EAST, AND FROM J

DEG, MIN, SEC TO J

RADIANS J

CALCULATE I

INERTIAL J

LONGITUDE J

AT REF. TIME J

IS STATION

-HARACTE RISTIC

NO. = 3

IS STATION

CHARACTERISTIC

NO. =4

IS STATION

:HARACTERISTIC

NO. 5

>

IS STATION

NO. =6

>

IS STATION

CHARACTERISTIC

NO.=7

,SSTAT,ON\
ARACTERISTIC

NO. = 13 jJ

f ,ss._,o._

UOHIT ,_ --

1FROM METERS

TO MERCURY

UNITS

T

t
.__,s STAT,ON\

A_o_.T_,'ST'_

ERROR

ERROR

UOERG

PRINT ERROR /

ON-LINE WITH

NO. OF THE

STATION

UOTRN+5

CONVERT FROM I

DEGREES, MIN-

UTES, & SECONDS

TO RADIANS

oO_'G/--GETS,NE)
ERROR

(OF GEODETIC

_ LATITUDE

GET COSINE /

OF GEODETIC

LATITUDE

I
GEOCENTRIC

LATITUDE

I
oGETS'NE\

F GEOCENTRIC _ ERROR

LATITUDE /

1

LATITUDE

I
.I
6

UOERF

PRINT ERROR /

ON-LINE WITH

NO. OF THE

STATION

I

FIGURE 4-14. UOSTUP PROGRAM FLOW CHART (Sheet 4o[7)

4-122

MC 63-4

IS STATION =

NO. = !7

>

IS STATION

cHAR
NO. = 18

>

IS sTATION

CH;
NO. _ 19

>

IS ST AT_ON

CHAI
NO. = 22

>

IS sTATION
IARACTERISTI

NO.= 23

>

cNA
NO. = 24

uoNMO

CALCULATE
_OOULUS

(n-1)

S sTATION

CHARACTERISTi
NO. _ 27

GET sQUARE

ROOT OF
WEIGHT 1

GET sQUARE
ROOT OF
WEIGHT 2

(AZIMU'rN)

sQUARE
OF

WEIGHT 3

(ELEVATION)

YES
IELEVATION) FOR

BoRESIGHT

PRINT ERROR
ON.LINE WITH
NO.OFTHE /

STATION

uoERI

PRINT ERROR
ON-LINE wiTH

NO. OF THE
sTATiON

6C

FIGURE 4.14.
UOSTUP PROGRAM FLOW CHART (Sheet 5 of 7)

4-123

MC 63-4

?
: f.ssT.T,o.

CNARACTER,ST,CJ
J _.NO.=32 /

/s CALI.RATE_I
BORESIGHT / I

No I

SET I

BORESIGHT

ELEVATION

J CORRECTION =0

J "

CALCULATE J

I BORESIGHT

J ELEVATIONCORRECTION

t I

CHARACTERISTIC I

A CAL'BRATE_I
BORESIGHT / I

A_=,%UTNJ I

S!T NO PRINT !N LINE

BOR ESIGHT I INIDIcATION THAT\

AZIMUTH I \CHARACTERISTIC/

CORRECTION=0 J _S OUT OF RANGE/

r

I CALCULATE J

BORESIGHT
AZIMUTH

CORRECTION

UONXT

ARETHERE\
ORE CHANGE)

0 BE MADEJ

UORES ?

I CALCULATE I

MERIDIAN RADIUS

OF REFERENCE

ELLIPSOID

l
I CALCULATEI

EARTH RADIUS I

FROM CENTER J

TO SEA LEVEL (R)I

CALCULATE I

EARTH RADIUS

FROM CENTER

TO STATION (Rs)

t OETS,NE\
OF GEODETIC ER_._2.R

INUS GEOCENTRIC/

LATITUDE /

MULTIPLY SINE

BY R.
MULTIPLY SINE

BY R s

/ GETCOS,NE\
ERRO__.J OF GEODETIC%

\MINUS GOECENTRI C/

\ LAT,TUDE/
1

MULTIPLY COSINE

BY R.
MULTIPLY COSINE

BY R=

UOERG . / UOERF ,

/

/PRiNTERROR\1 /PR,NTERROR\
/ ON-LINE '_ / ON-LINE '_
_WITH NUMBER/ _ WITH NUMBER/

\ OF STATION / \ OF STATION /

1 l

FIGURE 4-14. UOSTUP PROGRAM FLOWCHART(Sheet6 o[7)

4-124

MC 63-4

UOEND?

APP' "AMMINO\
CODE TO I D

RECORD /

(MSWECC) /

WRITE UPDATED

I D RECORD

ON

TAPES 9 AND 10

q

RINT INDICATOR

ON _,/

YES

,PRINT UPDATED \
STATION BLOCK \

ON-LINE)
INDICATE WITH /
ALL DATA THAT/

HAS CHIANGED /

I APPLY 1

HAMMING CODE
TO UPDATED

STATION BLOCK
(MSWECC)

1
WRITE UPDATED

STATION BLOCKS

ON

TAPES 9 AND 10

1

(MORE STATION I

_ BLOCKS J

_ NO
/_EAD AND CHE_
/ UPDATED TAPES
/ 9 AND 10. _ ERROR FOUND

COMPARE HAMMING I
_CODES AND CHECK/

_ REDUNDANCYJ

NO
ERRORS

ERROR EXIT

PRINTON-LtNE /

THAT NEITHER

INPUT TAPE 7

NOR 8 COULD

BE READ

TRANSFER

CONTROL TO SOS

TO GET DUMP

OF PROGRAM

PRINT /

ERROR

INDICATION

ON-LINE

FIGURE 4-14. U0STUP PROGRAM FLOW CHART (Sheet 7 of 7)

4-125

Section 5

MC 63-4

POSTFLIGHT ANALYSIS AND REPORTS

Each time the Mercury Operational System is run, whether on an actual

mission or a simulated mission for test, a log tape is made. The log tape con-
tains all data produced during the mission--input and output between Goddard,
Cape Canaveral, and the worldwide tracking network-and is analyzed after the
run to record important data and information about the mission.

The postflight reports are generated by the self-contained postflight re-

porter program written in Fortran. The Postflight Reporter program recal-
culates certain parameters and calculates other parameters which either were

never calculated by the operational program (such as aerodynamic parameters)
or which were calculated but were never recorded (for example, longitude of
node). Being self-contained, the program contains a monitor program (pre-
sented in subsection 5.5) and a collection of other programs which is divided
into four categories:

a) Initialization Programs--presented in subsections 4.6 to 4.9, establish
certain data and values to be used by subsequent programs.

b) Tape Processor Programsmpresented in subsections 4.9 to 4.22,
process the tapes and extract the necessary information.

Phase Processor Program--produce the data for the reports. These
programs and their support programs are discussed in subsections
4.22 to 4.35.

d) Utility Programs--presented in subsection 4.35.

Subsection 4.36 presents the program operating procedures and Appendix

A defines the symbols used by the Postflight Reporter program.

Additional information pertinent to the Postflight Analysis and Reports
section is given in Appendixes B, C, and D, which are titled Postflignt Reporter
Symbolic Designations, Coordinate Conversion Systems, and Report Data
Formats, respectively.

5-1

MC 63-4

5.1 POSTFLIGHT MONITORPROGRAM

Postflight Monitor is a control program developedspecifically for the post-
flight reporter. It makes logical decisions and directs the functioning of the
various subroutines and is in noway related to the Mercury Programming
System Monitor. Its operations directly produce the postflight reports. The
Postflight Monitor supervises the search for output from which corresponding
input is derived, which is the reverse of the procedure employed in the Mer-
cury Programming System.

Monitor relies on external and internal controls. Internally, it uses
COMMONto facilitate the exchangeof data amongits subroutines. COMMON
creates storage for the general interchange of information. Externally, Monitor
requires the use of control data cards, senseswitches, and entry keys to exer-
cise the various options of the program.

The general flow chart for the Postflight Reporter program is shownin
Figure 5-1. The flow chart for the Monitor program is shownin Figure 5-2.

5.1.1 Input Requirements

The 12 major subprogram inputs to the Monitor program are:

a) CHUMLY--sets up BCDoutputblocks in core.

b) ACTORS--sets conversion constants into core.

c) INITIA--initializes system constantsand geophysical parameters.

d) SORTER--sorts the log tape into high-speed input/output data and
determines discrete eventtiming.

e) GETME--supplies times of discrete events.

f) DONOUT--obtainshigh-speedoutput data.

g) DONIN--obtains high-speed input data.

h) LAUNCH--calculates launchand abort parameters from high-speed
input data.

i) ORBIT--calculates orbit parameters from orbit display output data.

j) RENTER--calculates abort and reentry parameters from the reentry
display outputdata.

k) NUMIN--calculates a series of position andvelocity vectors by use of
the numerical integration program.

5-3

MC 63-4

1) GRUNGY--interpolates for a pair of position and velocity vectors at
a given time by use of the Langrangian interpolation routine.

m) DISTAN--computes distances traveled by using geocentric latitude
and longitude.

These major inputs use a number of subordinate programs which are dis-
cussed later in this section.

Another source of input to Monitor is COMMON which contains all constants
and parameters. COMMON is a block in high-order core storage of 175 locations.

It begins at 774618 and proceeds downward in memory until the COMMON list is

exhausted. It includes some dimension quantities. The composition of COMMON
is described in subsection 4.5.4 which also lists the Fortran routines that must

be in core for successful operation of Monitor and its subprograms.

5.1.2 Output Requirements

All output from the Monitor program is placed in COMMON andmay be
printed on-line and written onto tape. The actual Monitor output data is used to
write the postflight reports. The program investigates four flight phases--launch,
abort, orbit, and reentry--for stated periods of time and selects the data required
for the specified reports. In addition, discrete event occurrences are reported.

At the beginning of each phase of both the Quick Look and Three Day Reports,
a heading is printed containing the name of the phase, the Greenwich Mean Time
of liftoff, and the longitude of Aries at liftoff, in degrees. The heading information
is printed one time only for each applicable phase. The paragraphs following the
headings contain the results of the postflight investigation. (The headings and data
formats are detailed in Appendix C of this manual.)

In the Condensed Report, the heading consists of the name of the phase and
the data format of the parameters. This heading is printed at the beginning of each
page of the report. The Condensed Report can be suppressed by depressing sense
switch 3.

5.1.3 Method

This subsection discusses the manner in which Monitor organizes and controls

the flow of information to produce the postflight reports.

At the start, Monitor calls the initialization program CHUMLY (see subsec-
tion 4.6) to read into core three BCD output blocks. It then calls ACTORS (see
subsection 4.7) to place a series of constants into a common block called FAC-

TOR. On the return from ACTORS, the Monitor prints a series of headings and
data formats (see Appendix C) with on-line option. These headings and data
formats actually contain the key for the postflight report.

5-4

MC 63-4

Monitor then reads in one card from the on-line card reader, which con-
tains two required physical constants*, and calls INITIA (seesubsection 4.8).
The INITIA Program initializes a series of physical constants and converts
them to forms more useful to Monitor. After returning from INITIA, the main
program prints on-line: IF SORTISNECESSARY-ENTER THE NUMBER OF
PHYSICAL LOG TAPES IN THE ADDRESSOF THE KEYS AND PRESSSTART.
IF SORTIS TO BE SKIPPED - DEPRESSSENSESWITCH 6, MOUNT A4 AND
B4, AND PRESSSTART. SENSESWITCHi MAY BE TOGGLED FORON-LINE
GLIMPSESOF C3 OUTPUT. DEPRESSSENSESWITCH3 TO SUPPRESSCON-
DENSEDREPORT ON B2. DEPRESSSENSESWITCH2 TO SUPPRESSDIS-
TANCE COMPUTATION, OUTPUT ONA-3. The program comes to a PAUSE
with 777718in the address portion of the storage register. After the operator
presses START, the program tests sense switch 6 to determine whether the
program will proceed to SORTER(see subsection 4.9). If the switch is up, a
sort is done; if it is down, the sort is suppressed. Although the output of
SORTERis necessary to Monitor, it neednot be redetermined once obtained.

On return from SORTER, the program determines whether the sort was
successful. If the routine was unsuccessful, a messagestates that AN ERROR
HASBEEN DETECTED IN KEY ORTAPE SET-UP. PLEASE REVIEW OPER-
ATING NOTES. AFTER COMPLETING CORRECTIONPRESSSTART. The
program, which is at PAUSE 777758,attempts to resort. If successful, the
program is ready to continue. Whenno sort can be made, the program can go
no further.

Monitor then calls the GETME subroutine (see subsection 4.19). GETME
searches a tape** created by SORTERfor the occurrence of seven discrete
events: GMTLO; SECO(or abort initiate); time of inception of abort or orbit
phase, and of reentry phase; number of retrorockets fired; andtime first
retrorocket fired. The time of occurrence of the last six events are all refer-
encedto liftoff (GMTLO).

Monitor returns from GETME and tests an indicator to determine whether
liftoff has beenfound. If it hasnot beenfound, Monitor assumes that there has
beena setup error. The operator is instructed to review his operating notes
and correct the error. There is a PAUSEat 777738, andwhenthe operator
presses START, Monitor returns to GETME. If the GMT of liftoff (GMTLO) is
not found, Monitor cannot continue.

Using GMTLO, Monitor computesthe Greenwich hour angle of Aries at lift-
off andtransfers to FIXIT1 which ensures that the angle lies between0 and 2

* The constants read in are THETA0, a launch day constant, andthe name of
the computer used. (SeeAppendixA for Fortran symbols and definitions.)

** The tape created by SORTERis a high-speed input messagetape. GETME
searches the second file of this tape.

5-5

MC 63-4

radians (including zero). Monitor converts this to degrees andtransfers to
FIXIT which ensures that this angle lies betweenzero and 360 (including zero).

Monitor tests whether the log tape contains the occurrence of six discrete
events (all eventssearched for by GETME except the number of retrorockets
fired). If any of the six eventshave not been found, the program will continue
with a zero value for each event. If the events have beenfound, HRSCNVis
called to convert these times from floating-point secondsto fixed-point integral
hours, minutes, and seconds. FIXIT2 ensures that the hours lie between0 and
24 (including zero). Monitor prints on-line and writes on C3 the time of occur-
rence of the individual event or the fact that it has not beenfound.

After initialization has beencompleted, Monitor is ready to process the
data and write its report. A request-for-report data card is read from the on-
line card reader. This card indicates the type of report data that is requested.
A zero in column one of the card indicates that the job is complete andthat all
data requested from the particular log tape is obtained. In this case, Monitor
writes on C3, the output tape, that the end of the job has been reached. An end-
of-file is also written on C3, A3, B3, and B2; the C3 tape is rewound and un-
loaded; and the program comes to a PAUSEat 777778. If the operator presses
START, the program transfers to the beginning to read andprocess a new log
tape.

The first character of the request-for-report card, if not a zero, should
be a one or a two. Two indicates a request for the Quick Look; one indicates a
request for the Three DayReport. The main program sets certain control
values positive, converts the start and endtimes on the input card to seconds,
and tests whether the time difference betweenthe first and last times to be read
is non-negative. If it is negative, the program prints on-line ERRORIN DECK
SET-UP. TF EXCEEDSTL. REPUNCH, PRESSSTART. There is a PAUSE
at 121218,and whenthe operator presses START, the program transfers back
to read in the card again.

If the difference betweenthe first and last times is positive, Monitor prints
out a headingindicating the information that is included in the tapes created by
SORTER. Monitor also determines the number of observations to be taken from
these tapes andthe phasewhich is to be examined. The GMT of the first mes-
sage is computedandthe program prints on-line the GMT of liftoff and the longi-
tude of the first point of Aries at liftoff. Monitor also computes the angle at
2-inch liftoff in the equatorial plane betweenAries and the longitude of the GE
radar, and the angle in the equatorial plane betweenAries and the longitude of
the pad.

At this point, Monitor prepares to enter the loop that starts writing the re-
port. DONOUTis called and the high-speed output logged messages are read
from the messagetape A4 (or A5). The data is removed according to a pre-
determined time and flight phase.

5-6

MC 63-4

There are three returns that can be indicated in a parameter, JERROR, of
DONOUT's call statement. Indicator one indicates no more output on the log
tape for the phase requested; the loop is terminated, and the next data card is

read. Two is the normal return. Indicator three shows a redundancy record.
In this case, Monitor skips this particular record and proceeds to the next time

interval. Monitor saves the time produced by DONOUT (in general, this is the
vector time from the log tape) to be incremented later in the loop.

When the indicator of DONOUT is either 2 or 3, Monitor determines the

phase being reported. If the phase is launch or abort, Monitor either transfers
to DONIN or acts in the same manner as in the error return case of DONIN

(see below). However, with processed data available, DONIN is used. DONIN
processes the high-speed input message tape. In its call statement are the
vector time, the data source, and an error indicator. When control is returned
to Monitor and if the error indicator shows that DONIN cannot find the associated

input message, the on-line printer states that THE PROGRAM HAS FAILED TO
LOCATE INPUT MESSAGES FROM TO TO CORRESPOND-
ING OUTPUT MESSAGES.

If DONIN has not found the associated input message, Monitor sets to zero
a number of parameters* which normally would be calculated by DONIN. Moni-
tor then turns to core to utilize data deposited there by DONOUT. Depending on
the type of report required, the program selects and prints out the appropriate
DONOUT data.

If DONIN has found the associated input message, subroutines IPCNV or
GECNV are used to convert the coordinates of position and velocity in the ap-

propriate data source reference frame (IP 7094 computer or B-GE computer)
to true inertial coordinates (see Appendix B). The LAUNCH program is called,
and it produces the calculated output required for the report.

When LAUNCH is entered and there is associated high-speed input, its
duties may be divided among reporting launch, abort and reentry displays.
There can be associated high-speed input for an MA launch, an MR abort and

an MA reentry. If a reentry switch is on, most of the LAUNCH program can
be used for the MA reentry situation. If an abort switch is on, RENTER, the
reentry processor, must be used for an MA abort situation (there is no as-
sociated high-speed input).

After it has produced the required output, LAUNCH returns to Monitor
which converts these outputs to their proper units for reporting. A heading is
prepared and records are written. If the phase is launch, the records are
written according to the Launch Data Format in Appendix C. Detail, if required,
is included in the report.

These parameters, which are defined in Appendix A, are: X, Y, Z, X1, Y1,
Z1, U, V, W, U1, V1, Wl, VI, PSII, CL, VE, GE, PSIE, ASUBR, S,
XMACH, QD, RN, and QS.

5-7

MC 63-4

Monitor determines whether the condensedreport information is also to be
written. Senseswitch 3 must be up to write the report; if the switch is down,
no condensedreport will be generated. If the switch is up, a new launch para-
graph is written for each 5-second increment of the phase, immediately after
Monitor calls RCACNV. This subroutine converts the recovery area to an
alphanumeric code. If an abort situation is represented, the procedures are
identical to those in launch except that the paragraphs are written in increments
of 10 seconds. Time is incremented and Monitor returns to DONOUTto pick up
the next message. (This completes onepass through the loop.)

If the phaseis orbit, Monitor reads in a time, position and velocity vector.
This vector is fed into the NUMIN subroutine which produces a table of position
and velocity vectors at one-minute increments over the valid period of the input
vector. The number of output points during the period of the input vector is
then computed anda loop entered which obtains the data for one of these points
on each pass through the loop.

Upon entering the loop, Monitor transfers to the DONOUTsubroutine which
obtains the high-speed output data for the time nearest the desired point. To
obtain a position andvelocity vector corresponding to the high-speed output
data, Monitor calls the GRUNGYsubroutine. This subroutine interpolates for
the desired vector within the table of vectors generated by NUMIN. Having ac-
quired both the input and output data, Monitor transfers to the ORBIT subrou-
tine. This program computes the rest of the desired orbital parameters. Upon
return to Monitor, the orbital parameters are converted to the desired output
units and the output report for that point is then written.

If the CondensedReport is to be generated on B2, Monitor calls subroutine
RCACNVand a new orbit paragraph for each additional one-minute increment
is written.

The loop described aboveis repeated until all desired points over the input
vector have beencomputed. Whenthis occurs, Monitor tests to see if the
vector just operated on is the last vector. If it is not, the next vector is read
in and the wholeprocess is repeated. If it is the last vector, control is trans-
ferred back to read in the next phase card.

If the phaseis reentry, the procedure is the same as the one used for
ORBIT. The only difference is that instead of transferring to the ORBIT sub-
routine, Monitor transfers to RENTER.

After each phaseis processed, a new phase card is read until a data card
with a zero in column one is read. As mentioned earlier, this is the end card.
The message, JOB COMPLETE, is written onG3; an end-of-file is placed on
the output tapes C3, A3, B3, and B2; C3 is rewound and unloaded;and the pro-
gram comes to a PAUSEat 777778.

5-8

MC A'*n ADO--_

At this point, another logical log tape may be processed without reloading
the program into core storage. If this is desired, the new C3 tape is mounted
and START is pressed. If this is not desired, the job may be completely
terminated.

5.1.4

a)

b)

Usage

Storage--the Postflight Monitor and its subprograms use shared stor-
age locations, COMMON, for all input and output. The contents of

COMMON are arranged in the following order:

X, Y, Z, Xl, Y1, Zl, U, V, W, UI, V1, Wl, XIP, YIP, ZIP, XIPl,
ZIP1, YI1, XX1, YY1, ZZ1, XI, ETA, ZETA, XI1, ETA1, ZETA1,
VI, VE, GI, GE, PSII, PSIE, RBAR, RRBAR, RADIUS, ARBAR,
AXIS, HE, HA, DTHTAP, R01, XLRHO, GMTLO, BCAC, RPBAR,
EQURAD, FFLAT, GRAVIT, XMUE, CANJ2, CANJ3, CANJ4, AC,
OMEGAE, XLPAD, XLM1, HPAD, XLMO, XNUA, THETA0, DL, CL,
XL, RL, ASUBR, XMACH, QD, RN, S, D, CR, SR, QS, VIVR,
VIVRGE, VIVRIP, GIGE, GIIP, ECC, XINC, ARGP, ARGP1, OME,
OME1, TP, TA, EA, XMA, PER, PHIMIN, XLMMIN, PHIMAX,
XLMMAX, PHIIP, XLMIP, DLMI, CS, DENS, XNU, P, NUMORB,

NORBCP, XLAMP, DPHIR, JAREA, NOGOGO, DTR, EGT, ECTRS,
GTRS, GTL, XICTRC, GMTLC, GMTRC, GMTRC1, GMTRC2,
GMTRC3, ECTRC, ECTRC1, ECTRC2, ECTRC3, GMTRS, T, TSECO1,
NORET, TRETRO, KHR, KMIN, KSEC, FACTOR, TM, HB, XLM, RO.

Included in the listing of COMMON are four dimension quantities which

involve more than one location. They appear below with their respec-
tive dimensions.

KHR - i0

KMIN - i0

KSEC - i0

FACTOR - 25

FORTRAN Programs--the Postflight Reporter is executed with the
Fortran 32K Monitor. In addition to the Fortran Monitor, the follow-
ing Fortran programs must be read into core for the successful opera-
tion of the main program and its subprograms:

(FPT), (CSH), (SLI), (RTN), (STH), (SLO), (FIL), (SPH), (EFT),

EXP(2, EXP, SQRT, EXP(3, ATAN, SIN, COS.

For column binary operation, the Fortran Monitor automatically sup-
plies these. For row-binary (absolute) operation, these must be a part
of the operational program.

5-9

MC 63-4

YES

' I
SORT LOG TAPE 1(SORTER)

I

NO

<SETUP>HOLLERITH TEXTS

CCHUMLY)

+
VALUES FOR
CONVERSION

FACTORS

(AC T 0 R'S1-

1
SYSTEM CONSTANTS
AND GEOPHYSICAL

PARAMET.E RS

(INITIA)

I
C HAS A L(X; TAPE)BEEN SORTED

_ YES

FIND GMTLO AND >

OTHER DISCRETE

REQUEST-FOR-REPORT
DATA CARD

1
YES (IS THIS A ,_

I SIGN-OFF

<REWIND& >

UNLOAD
OUTPUT

TAPE

PAUSE HI C4"I-SP EED OUTPUT

DISPLAY DATA

(DONOUT)

FIGURE 5-1. POSTFLIGHT REPORT PROGRAM, GENERAL FLOW CHART (Sheet 1 o[2)

5-10

MC 63-4

_-,:,.,rRYC "':s"P"s'__

(_ (_ORBIT

J READR&V I 1 READ R&V 1

t t
<oo > <_,.,,,._,_,_,_>ooNUMERICAL

INTEGRATIONINTEGRATION

(N_N 1 (_N)

< > <INTERPOLATE>

INTERPOLATE
FOR POINT FOR POINT

(GRUNGY)t IGRU_ NGY)

<oo.-E_._> < ooo.,T>COMPUTATIONS COMPUTATIONS

(RE-ENTRY) , (ORBIT)

cCONVERTDATATO\
OORDINATE SYSTEM_'

t
WRITE POST >FLIGHT REPORT

I co_PUTE\
DISTANCES)

TRAVELED/

_PHASEPROCESS'N_YESCOMPLETEJ --_@
| NO

REENTRY C TESTPHASE _

tORBIT

_ ,SVECTOR) (ISVECTOR)...___STILL VALID STILL VALID

t NO t NO

(_ THIS LAST VECTOR_ I_ THIS LAST VECTOR_

(_NO (_YES

LAUNCH & ABORT l

!

PROCESS HIGH- >
SPEED INPUT

(DONIN)

l
PROCESS >

LAUNCH DATA
(LAUNCH)

FIGURE 5- 1. POSTFLIGHT REPORTER PROGRAM (GENERAL FLOW CHART) (Sheet 2 of 2)

5-11

MC 63-4

AUTHOR

t.........

+
READ FIRST CARD

1
OUTPUT THESE

DATA

1
OUTPUT KEY

1
READ SECOND CARD

t

t
ON-LINE MESSAGE

PAUSE

CREATES I

BCD OUTPUT

BLOCKS

SETS UP FACTOR

TABLE OF

CONSTANTS

HEADING I
DATA

ON C3 WITH

ON-LINE PRINT-

OUT OPTION

LAUNCH DAY IPARAMETERS

INITIALIZE I

CARD DATAIN

COMMON

FIGURE 5-2. POSTFLIGHT MONITOR FLOW CHART (Sheet 1 of 4)

5-12

SURP RESS OR
EXECUTE SORT

ERROR

t

ON-LINE MESSAGE

PAUSE

$

?
I...._NSESW'TCH_)UP

GETME

J PRINT VARIOUS
DESCRETE EVENT

MESSAGES

+
YES

E OF ON C3, A3, B2, B3 J

l
UNWIND >

I READ NEXT JPHASE CARD

t
(_OLO_,_:)

} ID'SCRETE_

_J EVENT I

IPROCESSORI

NO

t
J SET UP TIMINGDATA

YES

J WRITE PHASE JHEADINGS

OBTAIN PAD DATAJ

IS TIME DIFF.
POSITIVE

SORTERS" t

RROR

JON-LINE MESSAGEI

PAUSE I

MC 63-4

I

SORTS LOG J
TAPE, WRITES
ON A4,B1,B4

NO

PRINT TIME
ERROR

PAUSE

FIGURE 5-2. POSTFLIGHT MONITOR FLOW CHART (Sheet 2 of 4)

5-13

MC 63-4

PROCESSES HIGH J <
SPEED OUTPUT

MESSAGES

_ REENTRY/F

NO

DONOUT

t
TEST PHASE

t

NO MORE OUTPUT

} =Q
FOR PHASE

ORBIT __=Q

LAUNCH & ABORT

NPUT DATA USABLE

t YES

DON,N)

t
LAUNCH

CONVERT TO >PROPER UNITS

t

WRITE
ABORT REPORTS

_ YES /f TOTALTIME)_,, EXPENDED

t NO

J INCREMENT TIME J

6

I PROCESSES HIGH
SPEED INPUT

MESSAGES

t DOES LAUNCH
OR ABORT

COMPUTATIONS

LAUNCH

t

I WRITE ILAUNCH REPORTS

I

FIGURE 5-2. POSTFLIGHT MOHITOR FLOW CHART (Sheet 3 o[4)

5-14

MC 63-4

<

<
<

<

?
READ R & V

VECTORS

NUMIN

_1
w!

DONOUT

GRUNGY

ORBIT

I
_ t

"1 ORBIT
|PARAMETERS

/ /
COMPUTES R & V L___/
VECTOR TABLES F -_

GETSOUTPUT __<MESSAGE

INTERPOLATES FOR k=--<REQUIRED VECTORS

I COMPUTES/__RE-ENTRY r"
PARAMETERSJ

READ R & V
VECTORS

l
NUMIN /

t_

DONOUT >

l
GRUNGY >

l
RENTER /

?
WRITE ORBIT IREPORT

INCREMENT TIME !

l
IS TOTAL TIME "_

EXPENDED J
YES

ASLASTVECTO_
FOR THIS PHASE]

BEEN READ J

1
!
(

?
WRITE RE-ENTRY

REPORT

l
INCREMENT TIME

l
IS TOTAL TIME

EXPENDED

YES

AS LAST VECTOR_
OR THIS PHASEI

BEEN READ J

FIGURE 5-2. POSTFLIGHT MONITOR FLOW CHART (Sheet 4 of 4)

5-15

MC 63-4

5.2 BCD OUTPUT INITIALIZATION PROGRAM (CHUMLY)

CHUMLY creates four BC D output blocks for the Monitor program. The
contents of these blocks are read into core storage to provide the BCD informa-
tion needed for the report. The blocks are:

HED1 Phase Title (Launch, Abort, Orbit, Reentry)

HED2 Data Source Title (B-GE, IP 7094, Raw Radar)

HED3 GO-NO-GO Title (GO-NO-GO, GO and NO-GO, NOT COMPUTED)

The flow chart for CHUMLY is shown in Figure 5-3.

5.3 CONSTANT FACTORS INITIALIZATION PROGRAM (ACTORS)

ACTORS reads into core the constant values of certain conversion factors

used throughout the Postflight Reporter Program. These constants read into a
common block, FACTOR, are-

FACTOR (1) =

FACTOR (2) =

FACTOR (3) =

FACTOR (4) =

FACTOR (5) =

FACTOR (9) =

FACTOR (I0) =

FACTOR (19) =

Feet per statute mile (5280)

Feet per nautical mile (6076. 1155)

Seconds per Mercury unit of time (806.8104)

Kilograms per meter3/slugs per foot 3 (515. 378725)

Meters per foot (0. 3048)

Two pi (6. 2831853072)

One radian (57.2957795 degrees)

One pi (3. 141592)

5.4 SYSTEM PARAMETER INITIALIZATION PROGRAM (INITIA)

INITIA initializes and converts system parameters required on launch day
into the basic internal units needed for use in subsequent programs of the Post-
flight Reporter. The parameter values obtained by INITIA are:

Time since liftoff (in floating-point seconds) of start of orbit phase

Time since liftoff (in floating-point seconds) of start of abort phase

Time since liftoff (in floating-point seconds) of start of reentry phase

5-17

MC 63-4

Geocentric latitude of spacecraft at end of retrofire

Longitude of spacecraft at end of retrofire

Local earth radius of spacecraft at end of retrofire

Cavonical equatorial radians in meters

Earth flattening

Gravity in meters/sec 2

Earth's gravitational constant in (meters3/sec 2) x 10-14

2nd harmonic potential in (meters5/sec 2} x 106

3rd harmonic potential in minus (meters6/sec 2) x 106

4th harmonic potential in (meters7/sec 2) x 106

Clarke spheroid equatorial radius in feet

Polar radius in feet

Radial distance of spherical earth in feet

Angular rotation of earth in rad/sec

Geodetic latitude of pad in degrees

Longitude of pad in degrees

Height of pad above mean sea level in feet

Longitude of GE central radar in degrees

Geodetic latitude of launch pad in radians (28. 4908729/2y) = XLPAD

(L, ,2Geocentric latitude of launch pad in radians arq tan H20925832. _

tan(XLPAD)]=XLRHO_20925832//cosS(XLRHO)+sinS(XLRHO)

Geocentric radius at pad in feet " _/ (20854892./2092532.)e-----------8---\
= RPBAR

Total distance from geocenter to pad in feet (RPBAR + 11. 571) = R01

Longitude of launch pad in radians (-80.547114/2?0 = XLMI

Longitude of GE radar in radians (-80. 581731/27r) = XLMO

Launch azimuth in radians (THETA0/2?r) = THETA0

Greenwich hour angle at midnight preceding launch in radians

Zeroth, second, third and fourth harmonics of earth's potential in English
units

)

5-18

MC 63-4

NOTE: feet -- international feet
seconds -- mean siderial seconds

INITIA also sets up eight coefficients of each seventh degree polynominal fit
(high and low altitude fits) of atmospheric density. The coefficients, determined

by a least squares criterion, are placed in a common block for use by the pro-
gram ATMOS.

5-19

MC 63-4

SAVE
INDEX

REGISTERS

STORE

INPUT/OUTPUT
ADDRESSES

STORE PHASE
INDICATORS

ACCORDINGLY

STORE DATA SOURCE
INDICATORS

ACCORDINGLY

STOR E GO-NO-GO
INDICATORS

ACCORDINGLY

RESET
INDEX

REGISTERS

FIGURE 5.3. CHUMLY PROGRAM FLOW CHART

5-20

MC 63-4

5.5 LOG TAPE SORT PROGRAM (SORTER)

The SORTER program consists of a control program and nine subroutines.
SORTER performs the unpacking and processing of the logical log tape and,
using the Mercury Programming System log tape(s), creates at least three other
tapes as output.

The flow chart for SORTER is shown in Figure 5-4.

5.5.1 Input Requirements

Input to SORTER is the log tape on B6 (and B7 if necessary). The other
input is the key setting giving the number of physical log tapes which comprise
the logical log tape. The following subprograms are used with this routine:

GEB, IPORR, MANIN, HSOP1, BCTB (BCTB1), BCTBI (BCTBJ), TISWS,
HMSTS, and GCNVE.

5.5.2 Output Requirements

This program creates at least three tapes from input logical log tape: B1,
a miscellaneous data tape; B4, which has high-speed input data on the first file

and discrete events data on the second file; and A4, a high-speed output data
tape. If necessary, there may be a second high-speed output data tape A5. All
redundant and rejected records are placed on the B1 tape for possible future
analysis.

5.5.3 Method

SORTER first rewinds the A4, (A5, when necessary) B1 and B4 tapes be-
fore writing data onto them. The entry keys are stored and sensed to determine
if they contained the number of physical log tapes comprising the logical log
tape. If the keys were not set, the program stores an error indication and re-
turns to Monitor.

If the entry keys were set, SORTER initializes to minus one the temporary
storage locations for discrete events. All indicators and switches are also set
to zero. The program then reads a record from the log tape. Each record
consists of ten 17-word blocks. Each block consists of five words of identifica-
tion and 12 words of data. A test is made to see if the record read is redundant.

If a redundancy occurs, the program attempts to read the record ten times. If
the redundancy continues to occur, the record is written on the B1 tape and the
next record is read.

5-21

MC 63-4

If the redundancy does not continue or if there was no redundancy, the
record is tested for an end-of-file. If the record is not an end-of-file, the log
identification for the block is stored in an identification input buffer. The re-

maining 12 words are stored in a data input buffer. SORTER tests the subehan-
nel number associated with the block. If the subchannel number equals one,

the program calls the subroutine GEB. IPORR is called if the subchannel num-
ber is two. HSOP1 is called if the subchannel number is three. If the subehan-

nel number is 30, the program calls MANIN.

If SORTER finds that the subchannel number is not 1, 2, 3 or 30, the pro-

gram determines whether all ten blocks of data have been processed. If the
blocks have not been processed, the program continues to the next block of data.
If all ten blocks have been processed, the program proceeds to read the next
record.

If the record being tested is an end-of-file record, it is determined whether
this is the logical end of the log tape. If this is not the logical end of the log
tape, the program examines to see if the B6 or B7 was processed. The tape
that was processed is rewound and unloaded. All references are changed to the

alternate tape (from B6 to B7, or vice versa).

If the end of the logical log tape is reached, SORTER determines whether
B6 or B7 was the last tape processed. This last tape is rewound and unloaded.
If all tapes have been processed, success is indicated and a search is made for
seven discrete events for the program GETME. All data pertaining to these
events is written on the second file of the B4 high-speed input data tape.

SORTER finally determines whether the last output record was written on
A4 or A5 and writes a double end of file on the appropriate tape. An end of file

is also written on B1 and the tapes are rewound and B6 is unloaded.

5.5.4 Usage

Call Statement

CALL SORTER (NOYES)

NOYES is an error indicator

1 indicates error return, error in tape setup

2 indicates normal return

5-22

SAVE INDICES J

REWIND
TAPES

A-4, B-4 &
B-I

STORE KEYS

(KEYS = 0

_NO

YES

SET INDICES

TO ZERO

STORE (-I) IN
DISCRETE EVENTS

TEMPORARY
STORAGE LOCATIONS

STORE ZERO IN
ALL INDICATORS

AND INTERNA L
LOGICAL SWITCHES

STORE 1
IN RETURN
INDICATOR

FIGURE 5-4. SORTER PROGRAM FLOW CHART (Sheet 1 o[4)

5-23

MC 63-4

MC ii0

I
t

INCREMENT Q 1COUNTER BY 1

t
I

RESET TO SEARCH J
1ST BLOCK OF RECORDS I

+
STORE LOG ID
IN ID BUFFER

t
I STORE REMAINDER 1

OF BLOCK IN
INPUT BUFFER

I INCREMENT INnRDER TO SEARCH
NEXT BLOCK

i

I STORE SUB-]
CHANNEL NUMBER

IN SPECIAL LOCATION

SET VARIOUS READ &

WRITE INSTRUCTIONS
WHICH ARE SUBJECT

TO CHANGE IN

THE PROGRAM

J READ INRECORD J
'_ YES

JREDUNDANCY

(TESTSUBCHANNEL) ---'_ ENDOF FILE)

NUMBER(_) (_ES __
a = SUBCHANNEL

- i IWRITE

_ ON g-I
!

RESET R
IPORR HSOP1 COUNTER

TO=0

GEB _,- MANIN

NO (QCOUNTER=IO)

rYES

,.CREME_TI I RESET_Q COUNTER COUNTER = 0
BY ONE

6 6

ITRYTOREA_
IRECOROTE_
I TIMES /

t
REDUNDANCY

PERSISTS ,J

FIGURE 5-4. SORTER PROGRAM FLOW CHART (Sheet 2 of 4)

5-24

MC 63-4

1
I CHANGE ALL

REFERENCES FROM

B-7-TO B-6

B-7

1
I REWIND AND IUNLOAD B-7

INCREMENT T

COUNTER BY ONE

1
COUNTER TO ZERO

UNLOAD

B-6

I
ESTFOREN_'_YES

LOGICAL LOG

TAPE j

NO

(TESTIF)B-6 OR B-7

CHANGE ALL J

REFERENCES FROMI

B-6 TO B-7 I

1
RESET Q J

COUNTER TO ZEROI

B-6 (

REWIND AND I
UNLOAD

B-6

,1
STORE GMT OF

ABORT INITIATE IN

OUTPUT BUFFER

I
TEST IF

B-6 OR B-7

B-7

REWIND AND

UNLOAD

B-7

i

)

I
COUNTER = KEYS_

YES

I
STORE 2 IN J

IRETURN

INDICATOR

J WRITE END JOF FILE ON B-4

.o_ASABORT'N'T'AT"hBEEN FOUND J

I YES

.of .ASGMTOF"_
| LIFTOFF BEENJ

_. FOUNDJ
YES

(_ j STORE ABORT I
INITIATE IN

SPECIAL LOCATION

6
FIGURE 5-4. SORTER PROGRAM FLOW CHART (Sheet 3 of 4)

5-25

MC 63-4

STORE DATA
PERTAINING TO

DISCRETE EVENTS IN
OUTPUT BUFFER

WRITE SPECIAL
EVENTS ON SECOND

FILE OF B4

WRITE END OF FILEON B4

REWIND B4

l
sTwR,TEooT.uC'_

DICATOR FOR A.-4,1

OR A-5 J

I A-4

J WRITE DOUBLE I
END OF FILE

ON A-4

t

I WRITE END
OF FILE ON

B-]

t
REWIND &UNLOAD B-1

I RESETINDICES

A-5

l
WRITE

DOUBLE END
OF FILE ON

A-5

J REWIND A-5

STORE RETURN
INDICATOR
IN CALLING

SEQUENCE

FIGURE 5-4. SORTER PROGRAM FLOW CHART (Sheet 4 of 4)

5-26

iV,L q,._ UO --_J:

5.6 SUBCHANNEL 1 PROCESSING PROGRAM (GEB)

GEB processes all subchannel 1 data (high-speed B-GE input from Cape

Canaveral). From the output telemetry of this Canaveral data, it determines
the occurrence of discrete events. This program also converts position (_)
and velocity (_) vectors to internal units of the Postflight Reporter.

The flow chart for GEB is shown in Figure 5-5.

Using the subroutine IOHSGB, GEB receives a 17-word block to be proc-

essed and outputs data on the B1 (miscellaneous) and B4 (high-speed input) tapes.
Each complete message consists of four 17-word blocks, and GEB determines
which of these is to be processed. If it is the first block of the sequence, the

12 significant data words are stored and the program returns to SORTER to
process the next block. If it is the second, third, or fourth 17-word block, a
log time test is made.

The log time of each block is compared with that of the first block. If the
times are equal, each of 12 significant data words are stored sequentially until
a 48-word buffer is filled. The log time is stored in a location used by IOHSGB,
and GEB calls IOHSGB to process the 48-word input buffer.

If the log times are not equal, all "ones" (l's) are stored in the remainder
of the output buffer. The output buffer is then written on the B1 tape. The log
identification is stored in the output buffer and the log time is placed in a loca-

tion used by IOHSGB.

If IOHSGB finds computed data without error, it exits to MFHSGB. If
IOHSGB finds an error in computed data, it exits to MFML6A. Exit is also
made to MFML6A in the case of telemetry data, whether good or bad.

When exit is to MFHSGB, the vector time is stored. The _ and _ values

are converted to feet and feet per second, respectively, and are also stored. If
liftoff has occurred, GMT of liftoff is stored and the liftoff indicator is set to
nonzero. If liftoff has not occurred, the program processes the next block of
data. If SECO has occurred and if the SECO indication did appear, the elapsed
time of SECO is stored and the SECO indicator is set to nonzero.

After liftoff is found, the output is written on B4; if correct, and it is
determined whether this is the end of the tape. If it is the end of B4, an end of
file is written and B4 is rewound and unloaded. Whether or not an end of tape

appears, GEB returns to SORTER to process the next block of data.

When exit is to MFML6A, it is determined if an error occurred in the data

and, if so, whether the error was due to the previously mentioned time test.
If the error was a result of the time test, counters, indicators, and addresses
are reset and GEB restarts processing. If the error did not result from the

5-27

MC 63-4

time test, the data is read into an error buffer, error is indicated and written
on the B1 tape, andGEB returns to SORTER.

If an error did not occur, the data is presumed to be telemetry data, and
the time tags, discrete signals and B-GE selected source, are stored. GEB
then tests for liftoff, abort initiate, retrorocket firings, abort phaseinception,
and orbit phaseinception.

If liftoff occurred in the messagebeing examined, then GMT of liftoff is
stored andthe liftoff indicator is set. If neither abort initiate nor SECOhas
occurred previously but abort initiate occurs in the present message, GMT of
abort initiate is stored andthe SECOand abort initiate indicators are set.

The program then tests whether the first, second, or third of three retro-
rockets have already been fired. If the first or secondor none of the retro-
rockets have beenpreviously fired, GEB tests the present messagefor an in-
dication of retrorocket firing. If the retrorockets did fire, the time of retrofire
and the number of retrorockets fired are stored.

If the retrorockets did not fire or if the firing of the third retrorocket was
previously indicated, the program tests for abort and orbit phase inception. If
either occurred previously, or if either cannot be found in a previous or in the
present message, GEB returns to SORTER. If either is found in the message
under examination, the appropriate indicator is set to nonzero, the GMT's of in-
ception of the eventsare stored, andthe program returns to SORTER.

5-28

MC 63-4

J INITIALIZE]
LOCATION

USED BY GEB

A>2

1
-_._ ACOUNTER:3_ _-3

A=3

(_ TIME OF 1STBLOCK = TIME Of/
THIRD BLOCK J'

_ NO

[SETXR4=24 J

t
1STT,ME

THROUGH GEB ,J J

SET,N=CATORI I
FOR 1ST TIME I I

THROUGH GEB I I

STOREOI.A_OUNTER,I
l-

YES

I INITIALIZE GEB
ID INPUT
BUFFERS

I INCREMENT ACOUNTER BY ONE

J STORE
IDENTIFICATION

IN ID BUFFER

t

IA=2

TIME OF 1ST _,_
BLOCK = TIME OF

SECOND BLOCK

| NO

J SET XR4= 36 J

I STORE HS

INPUT DATA BLOCK
IN INPUT BUFFER

TO 10HSGB

I INCREMENT
INPUT BUFFER
ADDRESS BY 12

(

ACOUNTL=R-4=ZERO)

I STORE ZERO IN A J
COUNTER AND

ERROR INDICATOR

INCREMENTED IN
GEB SUBROUTINE

6
YES

t
A COUNTER = 4

YES

!
TIIME OF IST BLOCK_

ME OF 4TH BLOCK.,)

t NO

J SET XR4 = 12

I STORE ALL I'S I

IN REMAINDER OF
INPUT BUFFER TO
10HSGB USING XR4

t
WRITE ERRONEOUS

INPUT BUFFER
ON B1

I
I

,I°
RESET INDICES

YES

FIGURE 5-5. GEB PROGRAM FLOW CHART (Sheet 1 of 4)

5-29

MC 63-4

NO

(END OF TAPE TEST)

YES

[REWIND AND JUNLOAD B1

I
MFHSGB

NO ERROR FOR /

COMPUTED DATA_
I

STORE VECTOR TIME I
IN OUTPUT BUFFER I

t
CONVERT CANONICAL

VALUES TO
APPROPRIATE R

AND _ VALUES AND

STORE IN OUTPUT

BUFFER

' OCCURRED

pTEST FOR SECO _ NO _IYES
OCCURRENCE IN

RESENT MESSAGE J -6
tYES

I STORE TIME OF SECO JIN SPECIAL LOCATION

6
FIGURE 5-5.

-t
STORE IN

ERROR INDICATOR

?
STORE ID OF J

INPUT BUFFER IIN OUTPUT SUFFER

STORE LOG TIME
IN SPECIAL
LOCATION

MFML6A
_ TELEMETRY DATA (GOOD OR BAD)

OR ERROR IN
10HSGB COMPUTED DATA

YES

STORE ZERO IN A
COUNTER AND

ERROR INDICATOR

RESET ADDRESSES
INCREMENTED

IN GEB

t
REWIND AND
UNLOAD B1

6
GEB PROGRAM FLOW CHART (Sheet 2 o[4)

_.._RE THE DATA IN ERROR_

YES

IS ERROR DUE TO)LOG TIME TEST

t NO
I

STORE 1 IN l

IERROR INDICATOR

;PACK DATA AND STORE

ERROR INDICATOR IN
ERROR BUFFER

t
BUFFER ON B1

,,

YES_ENDOF TAPE TEST)

I I"°

5-30

MC 63-4

"--_A HAS LIFTOFF

LREADYOCCURRED)

.._FO._,F.O_.O..
OCCURRENCE _------_'_3)

N THIS MESSAGEJ v

YES

LIFTOFF IN

SPECIAL LOCATION

t
[ILIFTOFF INDICATOR

WRITE FULL I
OUTPUT BUFFER

ON B4

i
END OF TAPE _'_TEST

YES

J WRITE END OF]FILE ON B4

J REWIND AND 1UNLOAD B4

J STORE TIME TAGS,

DISCRETE SIGNALS,
AND

B-GE SELECTED

SOURCE

INDICATOR

_A HAS LIFTOFF

LREADY OCCURRE_

J.o
(__ HAS LIFTOFF _

MESSAGE J

T
_As SECOORABORh

__ ,NIT,ATEALREADY)
X,.. OCCURREDJ

__ _ NO

ITIATE OCCURRED J

N THIS MESSAGEJ

YES

STORE GMT OF

ABORT INITIATE IN

SPECIAL LOCATION

V

()
STORE NONZERO

IN ABORT INITIATE
INDICATORS

YES
I

STORE GMT OF J

ILIFTOFF IN

SPECIAL LOCATION

I

STORE NONZERO IN I

ILIFTOFF INDICATOR

FIGURE 5-5. GEB PROGRAM FLOW CHART (Sheet 3 of 4)

5-31

MC 63-4

?
NO /"HAS INDICATION ANY_

1 1 OF THE 3 RETRO- |
t _, ROCKETS BEEN PRE- J_._ VIOUSLY FIRED J

NO f'- HAS INDICATION OF _ a, Y=S>2 =_'_ 1ST OF 3 RETROS FIRED _

_,_PPEARED IN MESSAG_(_)'_RETROFIRE INDICATOR: _"_t ,ES t
STORE GMT OF

1ST RETROFIRING
IN SPECIAL
LOCATIONS

t

J STORE 1 IN RETRO- J
FIRE COUNTER
AND INDICATOR

YES -- _

HAS ABORT
_ ALREADY OCCURRED,,/

INCEPTION INDICATOR)"

EARED IN THIS MESSAG_

. t NO

LREADY OCCURR E D//

, t NO

AS ORBIT INCEPTION_

DICATORAPPEARED J

IN THIS MESSAGE J

t YES

J STORE NONZERO IN I
ORBIT PHASE

INCEPTION INDICATOR

J
STORE GMT OF

ORBIT INCEPTION
IN SPECIAL LOCATION

_3_pAS INDICATION OF_'_

OF 3 RETROS FIRED)
PEARED IN MESSAGE,/

t YES

STORE GMT OF
3RD RETROFIRING

IN SPECIAL
LOCATION

STORE 3 IN RETROFIREI
COUNTER AND IINDICATOR

YES

J STORE NONZERO IN J
ABORT PHASE

INCEPTION INDICATOR

STORE GMT OF
ABORT INCEPTION

IN SPECIAL LOCATION

FIGURE 5-5. GEB PROGRAM FLOW CHART (Sheet 4 of 4)

AS INDICATION OF_NO/_" _

OF 3 RETROS FIRED

PEARED IN MESSAG._/

YES

STORE GMT OF 2ND
RETROFIRING IN

SPECIAL LOCATION

i
STORE 2 IN RETROFIRE

COUNTER AND
INDICATOR

5-32

MC 63-4

5.7 IP 7094 HIGH-SPEED INPUT PROCESSOR PROGRAM (IPORR)

IPORR processes all high-speed input data from the Cape Canaveral IP

7094 computer. This program receives a 17-word block of data from an input
buffer. Usingthe subroutine IOHS09 (see Volume MC 63-3, Goddard Processor

Programs), IPORR processes the IP7094 high-speed input and places significant
data on the high-speed input tape (B4). The erroneous data is packed and stored
in an error buffer and written on the miscellaneous tape (B1).

The flow chart for IPORR is shown in Figure 5-6.

When IPORR is entered and a block of data is input, the identification of the
block is stored in an identification buffer and the program determines whether
this is the first, second, third or fourth block of a sequence. If it is the first
block, the 12 significant data words are stored in the IOHS09 input buffer. If it
is the second, third or fourth block, a time test is made.

The time associated with each sequential block is compared with the time of
the first block. If the times agree, the data in the block being compared with
the first block is stored sequentially until a 48-word buffer is filled. If the
times do not agree, all "ones" (l's) are stored in the remainder of the buffer
and written on the B1 tape. An error indicator is also set. Whether or not the

times are equal, the identification of the block is stored in an output buffer, and
the log time is stored in a location used by IOHS09, which is then called.

IOHS09 exits to MFHS09 if the data source is IP 7094 processed data. If the
data source is the IP 7094, the position (_) and velocity (_) vectors are converted

and stored with the respective time tag in the output buffer. The program tests
for liftoff at this time. If liftoff did not already occur, the program returns to
process the next block. If liftoff did occur, the output buffer is written on the
B4 tape and the program returns to process the next block.

IOHS09 exits to MFHS08 if the data is assumed to be either telemetry or
erroneous. If the data is erroneous and the error is a result of the previously
mentioned time test, the program returns to IPORR. If the error is not from
the time test, the data is packed, stored, and written on B1, and the program
then returns to SORTER.

If no error is indicated, the program stores time tags, discrete messages,
and IP selected source indicator. The program then tests for liftoff. If it has
not occurred previously, but does occur in the message being examined,
GMTLO is stored and the liftoff indicator is set to nonzero.

IPORR also tests for abort initiate, first, second and third retrofire, abort
phase inception, and orbit phase inception. If each of these is found, the GMT
of its occurrence is stored and the appropriate indicator is set to nonzero.

Whether or not the discrete events occurred, the program returns to SORTER
to process the next block of data.

5-33

MC 63-4

ISAVE INDICES
INITIALIZE SUB-
ROUTINES USED

BY IPORR

t
1ST TIME

THROUGH IPORR

YES

SETA COUNTER
AND ERROR

COUNTER = 0

A COUNTER = 0

YES _

RESET VALUES
USED BY IPORR

IP-ID BUFFER
AND INPUT DATA

BUFFER

t
A COUNTER: 3

A=3

)

I
)

I INCREMENT

A COUNTER

BY 1

t
I

A_

I

I

STORE iDENTIFICATION 1IN ID BUFFER

A COUNTER: 2)

A=2

TIME OF 1ST BLOCK_
=TIME OF 2ND J

BLOCK _'

_NO

SET XR 4 = 36 I

®

A<2

YES

v

TIME OF 1ST BLOCK_ YES
FRAME = TIME OF

3RD BLOCK J

t NO

I SETXR4=24 I

0

A COUNTER -4=0

YES

FTIME OF 1ST BLOCK _YES
RAME = TIME OF 4TH}

BLOCK ._

_ NO

I SETXR4=12 I

_Q

FIGURE 5-6. IPORR PROGRAM FLOW CHART (Sheet 1 of 5)

5-34

MC 63-4

?
STORE HS INPUT
DATA BLOCK IN

INPUT BUFFER TO
10HS09

INCREMENT
INPUT BUFFER
ADDRESS BY 12

A COUNTER = 4

_-"_Es
STORE ID OF

INPUT BUFFER
IN OUTPUT

BUFFER

STORE GMT IN I

SPECIAL LOCATION J

(
MFHS09 1

NO ERROR FOR
COMPUTED DATA

STORE VECTOR
TIMEIN OUT-

PUT BUFFER
i

10HS09

sI

MFHS08
TELEMETRY DATA

\ (GOOD OR BAD) OR

INCOMPUTEDDATA

?
STORE ALL 1'S
IN REMAINDER

OF INPUT BUFFER
TO 10HS09

(

I

WRITE ERRONEOUS
INPUT BUFFER

ON B-1 TAPE

END OF TAPE
TEST

YES

REWIND &
UNLOAD B-I TAPE

I STORE 1 IN IERROR INDICATOR

I

FIGURE 5-6. IPORR PROGRAM FLOW CHART (Sheet 2 of 5)

5-35

MC 63-4

?
CONVERT CANONICAL

VALUES TO

APPROPRIATE R&

VALUES AND STORE

IN OUTPUT BUFFER

HAS LIFTOFFOCCURRED

YES

I WRITE FULL

OUTPUT BUFFER

ON B-4 TAPE

END OF TAPETEST

_YES

WRITE END OF

FILE ON B-4

I REWIND & UNLOADB-4 TAPE

STORE ZERO IN

A COUNTER &

ERROR INDICATOR

RESET ADDRESSES

INCREMENTED

IN IPORR

SUBROUTINE

I
I

YES

STORE ZERO

IN A COUNTER

& ERROR

INDICATOR

RESET ADDRESS

INCREMENTED

IN IPORR

SUBROUTINE

?
HAS ERROROCCURRED

I YES

OCCURRED |

BECAUSE OF TIME]

TEST ERROR /

STORE NONZEROIN

ERRORINDICATOR

PACK TELEMETRY

IN ERROR BUFFER

STORE ERROR

INDICATOR IN

ERROR BUFFER

WRITE ERROR

BUFFER ON

B-1 TAPE

END OF TAPETEST

YES

REWIND &

UNLOAD B-1 I

FIGURE 5-6. IPORR PROGRAM FLOW CHART (Sheet 3 of 5)

5-36

MC 63-4

YES
I

NO

STORE TIME TAGS,
DISCRETE SIGNALS,
AND IP SELECTED

SOURCE

INDICATOR

HAS LIFT--OFF OCCURRED

I YES

NO

'_oHAS LIFTOFF BIT_'_

CCURRED IN ,H,Sg °C)
MESSAGE

AS SECO OR ABORT_ __

ITIATE OCCURRED _'---
(SCIN _ 0)

A ORT,N,T,ATE'

YES

STORE GMT OF

ABORT INITIATE

IN SPECIAL

LOCATION

STORE NONZERO IN
ABORT INITIATE
INDICATOR AND

SECO INDICATOR

YES

STORE GMT
OF LIFTOFF
IN SPECIAL

LOCATION

STORE NONZERO IN
LIFTOFF INDICATOR

_'_HAS FIRING OF ANY_%_ . _
--J' 1 OF 3 RETROS BEEN

- _REVIOUSLY INDICAT_

FIGURE 5-6. IPORR PROGRAM FLOW CHART (Sheet 4 of 5)

5-37

MC 63-4

NOr__TESlNDICATION'_ J STORE GMTOF--
2ND RETROFIRING /

PPEAR INTHISJ II3RDINRETROFIRINGsPECIAL

I IYES I STORE 3 IN

RETROFIRE
STORE GMT OF COUNTER AND

2ND RETROFIRING INDICATOR
IN SPECIAL
LOCATION

J STORE 2 IN RETRO- J
FIRE COUNTER AND

INDICATOR

?
(_ ,.>2f DOES,ND,CAT'ON"X

F DOES'ND'CAT,O"_-'X t

NO

t
HAS ORBIT ALREADYOCCURRED

_ NO

IN THIS MESSAGE

YES

I STORE NONZERO
IN SPECIAL
LOCATIONS

t
STORE GMT OF

ORBIT INCEPTION
IN SPECIAL
LOCATIONS

I STORE 1 IN RETRO-

FIRE COUNTER AND
INDICATOR

I

HAS ABORT ALREADYOCCURRED

_NO

HAS ABORT INCEPTION_'_
INDICATOR APPEARED)

IN THIS MESSAGE J

YES

STORE NONZERO IN
ABORT PHASE

INCEPTION
INDICATOR

J STORE GMT OFABORT INCEPTION

FIGURE 5-6. IPORR PROGRAM FLOW CHART (Sheet 5 of 5)

5-38

MC 63-4

5.8 MANUAL INSERTION PROCESSOR PROGRAM (MANIN)

MANIN searches manually inserted messages for the occurrence of dis-
crete events. This program uses IOMANI as a subroutine.

The flow chart for MANIN is shown in Figure 5-7.

The program is entered and a word count is taken from the block identifica-

tion and stored in the decrement of a location already containing the address of
the first word of an input buffer. The data is stored and the location is placed
into the AC. MANIN calls IOMANI to process the data. When IOMANI exits to

MFMANI, MFMAN3, MFMAN5, MFMAN6, MFMAN8, or MFMAN9, MANIN
returns to SORTER to process the next block of data.

If liftoff data were in the message, IOMANI exits to MFMAN1. Thereupon,
MANIN converts GMT of liftoff (GMTLO) to floating-point, stores it, and sets
the liftoff indicator equal to nonzero. This GMTLO overrides any previous
GMTLO found by any other subroutine. The program returns to SORTER to
process the next block of data.

An exit to MFMAN2 indicates retrofire data. The number of retrorockets

fired is stored. A three (3) is placed in the retrofire indicator, and the GMT of

the first retrofire is converted to floating-point and stored. This overrides any
previous retrofire time. Again the program returns to SORTER.

When IOMANI exits to MFMAN4, an incremental delta t for either the IP

7094 or B-GE vectors is to be added. In this case, the delta t for both types of
vectors is converted to floating-point and stored. MANIN returns to SORTER.

If exit is made to MFMANT, the nonnominal retrofire data is processed.

The GMT of the first retrorocket firing is stored in floating-point in the output
along with the number of retros fired. MANIN returns to SORTER.

Exit is made to MFMAOS on indication of abort or orbit data. A test is

made to see if abort phase inception has been indicated. If not, checks are

made for indication of orbit inception in the message. If orbit inception does
not appear in the present message, the program returns to SORTER to process
the next block of data. If the present message indicates that either orbit or

abort phase is in effect, the respective indicators are set to nonzero, the time
of the message is placed in floating-point mode and stored, and the program
returns to SORTER.

5-39

MC 63-4

?
J RESET INDICES J

J STORENUMBEROF tRETROROCKETS FIRED IN I
RETROFIRE COUNTER ,I

I STORE 3 IN RETRO-FIRE INDICATOR

1
J FLOAT & STORE

GMT OF FIRST
RETRO FIRING

l SAVE INDICES

I INITIALIZE FROMCALLING SEQUENCE

STORE BLOCK ID
IN ID BUFFER

STORE THE COUNT OF
WORDS LOGGED IN

THIS BLOCK IN XR4
AND IN DECREMENT OF

SPECIAL LOCATION

DATA WORDS IN
TEMPORARY BUFFER

OF LOGGED WORDS IN
THIS MESSAGE IN THE AC

MFMAN 9/ 10MANI _MFMANI
EXIT FORk ., .//EXIT FOR LIFTOFF

RETROFIRE/MFMAN 7J / SIGNAL

SIGNAL/'_MdMA_ 4

EXITS FOR MFMAOS
MFMAN I _ v, EXIT FOR
MFMAN 3 _'__ _ ABORT-ORBIT
MFMAN 5 /RETURN \ SWITCH SIGNAL
MFMAN 6 I _ TO
MFMAN 8 _ _ORTER I f _,

RESET INDICES

FLOAT AND STORE
GMT OF LIFTOFF IN
SPECIAL LOCATION

STORE NONZERO

IN LIFTOFF INDICATOR

FIGURE 5-7. MANIN PROGRAM FLOW CHART (Sheet 1 of 2)

I
5-40

MC 63-4

I FLOAT AND STORE

LOG TIME

ASSOCIATED

WITH MESSAGE

1

NONZERO AND NONZERO AND
STORE TIME AS STORE TIME AS
GMT OF ABORT GMT OF ORBIT

pHASE INCEPTION PHASE INCEPTION

FLOAT AND STORE

DELTA T S FOR

|P7094 AND GE/B

VECTORS

Q 1,2,&3
1ST OR
2ND OR JlS1
3RD J2NI

STORE ONE AS NO.

OF RETROS FIRED.
FLOAT AND STORE

GMT OF PARTI-

ULAR RETRO ROCK

I SET RETRO
FIRE

INDICATOR

1
WRO'SHAVEF,R '

& !ND & /
OR 3RD
&

STORE TWO AS NO.
OF RETROS FIRED.
FLOAT AND STORE
GMT OF 2ND RETRO

ROCKET FIRING

I
STORE TWO AS NO.
OF RETROS FIRED.

FLOAT AND STOF_

GMT OF 1ST RETRO

ROCKET FIRING

i

J TORE ZERO AS
NO. RETROS FIRED.

J FLOAT AND STORE

I GMT OF RETRO 1

FIGURE S-7. MANIN PROGRAM FLOW CHART (Sheet 2 of 2)

I 5-41

MC 63-4

5.9 HIGH-SPEED OUTPUT TAPE WRITER PROGRAM (HSOPI)

This program processes all high-speed output data and writes it on the A4
tape (and A5 if necessary). HSOP1 converts and scales the data with the use of
five conversion subroutines.

The flow chart for HSOP1 is shown in Figure 5-8.

Input to this program are two 17-word data blocks. HSOP1 also uses the

conversion subroutines BCTB (BCTB1), BCTBI (BCTBJ), HMSTS, TISWS, and
GCNVE. The program outputs a 44-word buffer and an A4 tape.

HSOP1 tests whether the occurrence of liftoff has been indicated. If it has

not, the program returns to SORTER to process the next block of data. If lift-
off has been indicated, a test is made to determine whether the first or second
subframe is being processed. In either case, the ID buffer is set up for the
appropriate ID. Then the proper subframe ID and the phase indication are
stored in appropriate locations. Again a subframe test is made. Now, if the
first subframe is being examined, the eight significant data words are stored
in an intermediate input buffer. A test is then made for the correct phase.
If the test proves that the phase indication is not recognizable, the erroneous
block of data is written on B1 and the routine returns to SORTER to process the
next block of data. Yet if the phase indication is acceptable, the correct phase
is stored and the correct odd-even indication is also stored. Then the routine
returns to SORTER.

If the second subframe is being examined, this means a complete message
has been received and the five significant words are stored in the remaining
portion of the intermediate input buffer. A test is made for indication of re-

entry phase in this message or a previous message. If this is the first indica-
tion of reentry phase inception, the time of the message is stored in floating-
point mode as the GMT of reentry phase. In any case, the routine then pro-
ceeds to unpack all strip charts and wall map data and store the data with the
data source indicator in the output buffer. A test is then made to see if the
message is odd or even frame data. If the message is an odd frame, the
digital displays are masked. GTRS and GMTLC are converted by HMSTS:

_PIP is converted by BCTB; kip is converted by BCTB1; r-R, i, and V/VR (or V)

are converted by BCTBI; and 7 (or HA) is converted by BCTBJ. All converted
values are stored in the output buffer.

If the message is an even frame, the digital displays are masked and

converted. GMTRCs, ECTRCs, Atr, and GMTRS are converted by HMSTS;

ICTRC is converted by TISWS. All converted values are stored in the output
buffer.

5-43

MC 63-4

Whether the message frame is odd or even, all the plotboard data is ex-
tracted and stored in the outputbuffer. All the nondigital display data is con-
verted by GCNVEto standard values and replaced in the same output buffer.
All data in the outputbuffer is put in floating-point mode. This outputbuffer
is written on A4 (or A5) together with the discrete signals.

5-44

MC 63-4

1>50 I

SAVE INDICES

l
I INITIALI ZE LOCATIONS JUSED BY HSOP1

HAS LIFTOFF) NOALREADY OCCURRED

YES

IS THIS 2ND HALF) NOSUBFRAME

YES

J FLOAT 1ST SUBFRAME GMT J
AND STORE IN

TEMPORARY STORAG[_

I FLOAT 2ND SUBFRAME
GMT AND STORE IN

ACCUMMULATOR

2ND SUBFRAME)
GMT - 1ST SUBFRAME

GMT : 50

_ 5o

J SET UP FOR 2ND JSUBFRAME OF ID BUFFER

I=
STORE LOG ID IN J
ID BUFFER FOR IAPPROPRIATE SUBFRAME

r

SET UP FOR 1ST

ID BUFFERI [HALF SUBFRAMEOF J

FIGURE 5-8. HOSP1 PROGRAM FLOW CHART (Sheet 1 0[8)

5-45

MC 63-4

STORE PHASE
INDICATOR IN

SPECIAL LOCATION

TEST FOR 1ST
OR 2ND

SUBFRAME

1ST

STORE8SlGNIFICANT
DATA WORDSIN
INPUT BUFFER

SENSE ON PHASE

ACCEPTABLE
PHASE NO.

STORE APPROPRIATE
PHASE NUMBER

IN SPECIAL LOCATION

STORE ODD-EVEN
INDICATOR IN

SPECIAL LOCATION
AND OUTPUT BUFFER

FIGURE 5-8.

5-46

2ND

STORE 5 SIGNIFICANT
DATA WORDS IN
INPUT BUFFER

UNACCEPTABLE

PHASE NO.

NO

WRITE ERRONEOUS
BLOCK OF DATA

ON B-1
MISCELLANEOUS

TAPE

END OF TAPE B-I

I YES

REWIND AND
UNLOAD B-1

HOSP1 PROGRAM FLOW CHART (Sheet 2 o[8)

(I

q

MC 63-4

HAS REENTRY YES
LREADY OCCURRED/

INDICATOR FOR

REENTRY J

YES

CONVERT LOG TIME Tol
i

FLOATING-POINT rSECONDS AND STORE

IN SPECIAL

LOCATION

1
STORE NONZERO I

IN REENTRY

INDICATOR

MASK ALL STRIP

CHART DATA &

STORE IN

OUTPUT BUFFER

MASK DATA

SOURCE

AND

STOR E

FIGURE 5-8. HOSP1 PROGRAM FLOW CHART (Sheet 3 0[8)

5-47

MC 63-4

MASK ALL WALL
MAP DATA & STORE

IN OUTPUT
BUFFER

t
MASK DATA SOURCE

AND STORE IN

SPECIAL LOCATION

t
(_ TEST ODD-EVEN)INDICATOR

EVEN

J MASK GMTRC JINTO ACCUMULATOR

t

f
STORE GMTRC
(IN FLOATING

POINT SECONDS)
IN OUTPUT

BUFFER

t
MASK At r OR

ECTRC 1 INTO
ACCUMULATOR

STORE TIME
(IN FLOATING

POINT SECONDS)
IN OUTPUT

BUFFER

ODD I MASK GTRS]INTO ACCUMULATOR

t

t
STORE GTRS

(IN FLOATING
POINT SECONDS)

IN OUTPUT
BUFFER

t
MASK ORBIT

NUMBER AND
STORE IN

OUTPUT BUFFER

t

J MASK GMTLC J

AND PLACE INTO
ACCUMULATOR

t

t
STORE GMTLC
(IN FLOATING

POINT SECONDS)
IN OUTPUT

BUFFER

FIGURE 5-8. HOSP1 PROGRAM FLOW CHART (Sheet 4 of 8)

5-48

MC 63-4

?
MASK GMTRC2 J

AND PLACE IN

ACCUMULATOR

t

< .MSTS_
t

STORE GMTRC 2 (IN
FLOATING-POINT

SECONDS) IN OUTPUT
BUFFER

t

J MASK ECTRC 2 J
AND PLACE INTO

ACCUMULATOR

t

HMSTS >

t
STORE ECTRC 2
(IN FLOATING-

POINT SECONDS)
IN OUTPUT

BUFFER

t
MASK GMTRC 3
AND PLACE IN

ACCUMULATOR

t
STORE GMTRC 3
(IN FLOATING-

POINT SECONDS)
IN OUTPUT

BUFFER

FIGURE 5-8.

J MASK PHI-IP

AND PLACE IN

ACCUMULATOR

_ BCTB_
t

STORE PHI-IP

(IN BINARY) IN

OUTPUT BUFFER

t
MASK LAMBDA-IP

AND PLACE IN

ACCUMULATOR

t

< BCTB1)
t

I STORE LAMBDA-IP
(IN BINARY) IN

OUTPUT BUFFER

t
MASK GO-NO-GO

INDICATOR AND

STORE IN OUTPUT

BUFFER

t

J MASK ;' - R AND
PLACE IN

ACCUMULATOR

t

< BCTB,_
t

I STORE? - R AND
BINARY) IN

OUTPUT BUFFER

HOSP1 PROGRAM FLOW CHART (Sheet 5 of 8)

5-49

MC 63-4

MASK ECTRC 3 I

AND PLACE IN

ACCUMU L ATO R

t

< .MSTS_
t

STORE ECTRC 3

(IN FLOATING
POINT SECONDS)

IN OUTPUT

i BUFFER

t
MASK GMTRS,
SHIFT LEFT 7

AND PLACE IN

ACCUMUL ATO R

t

<..sTs
t

STORE GMTRS

(IN FLOATING
POINT SECONDS)

IN OUTPUT
BUFFER

f
MASK ICTRC AND

PLACE IN

ACCUMULATOR

t

I
STORE ICTRC

(IN FLOATING
POINT SECONDS)

IN OUTPUT
BUFFER

FIGURE 5-8.

MASK Ha OR

7 AND PLACE
IN

ACCUMULATOR

f

t
STORE Ha OR

y (IN BINARY)
IN OUTPUT

BUFFER

I
MASK i AND

PLACE IN

ACCUMULATOR

BCTBI

t
STORE i (IN

BINARY) IN

OUTPUT BUFFER

t
MASK ORBIT

CAPABILITY

INDICATOR AND

PLACE IN

OUTPUT BUFFER

t

V i AND PLACE

INTO ACCUMULATOR

t

_BCTB, _

HOSP1 PROGRAM FLOW CHART (Sheet 6 of 8)

5-50

MC 63-4

MASK RECOVERY
AREA INDICATOR

AND STORE IN
OUTPUT BUFFER

STORE Vi/VR OR

V i (IN BINARY)

IN OUTPUT BUFFER

MASK ALL PLOT-BOARD

I, 2, 3 AND 4 DATA

AND STORE IN

OUTPUT BUFFER

1
FLOAT ALL DATA

IN OUTPUT BUFFER
IN ACCORD WITH

ODD-EVEN INDICATOR

SET PHASE INDICATOR
IN ACCUMMULATOR AND

ODD-EVEN INDICATOR
IN MQ

1
GCNVE >

STORE DATA _URCE

INDICATORS AND
GO-NO-GOINDICATOR

INOUTPUT BUFFER

FIGURE 5-8. HOSP1 PROGRAM FLOW CHART (Sheet 7 of 8)

5-51

MC 63-4

RESET INDICES

TESTW"'T_"_NO,CATO.FO..
A4 OR A5 J

WRITE OUTPUT
BUFFER ON A4

 O(E.OOFTAPE ,ES,
YES

WRITE END OF
FILE ON A4

AND STORE I
IN WRITE

INDICATOR

REWIND A4
AN D A5

A5

WRITE OUTPUT
BUFFER ON A5

t
END OF TAPE NO_..____

TEST

t YES

WRITE END OF
FILE ON A5
AND STORE

ZERO IN WRITE
INDICATOR

REWIND AND
UNLOAD A4

I BACKSPACERECORD ON A5

l_

BEGINNING OF

YES A5 TAPE TEST)

FIGURE 5-8. HOSPI PROGRAM FLOW CHART (Sheet 8 of 8)

5-52

MC 63-4

5. i0 BCD WORD CONVERSION PROGRAM (A) (BCTB/BCTBI)

This subroutine of HSOP1 converts modified BCD numbers to fixed-point
binary numbers. The modified BCD numbers are in one of two prescribed

formats, which are prerequisites for proper entry into the subroutine.

The flow chart for BCTB/BCTB1 is shown in Figure 5-9.

This program is entered through BCTB if the format of the modified BCD
number is 4 bits/digit, 4 bits/digit, 3 bits/digit and 4 bits/digit. Entry is
through BCTB1 if the format of the word to be converted is 1 bit/digit, 4 bits/
digit, 4 bits/digit, 3 bits/digit and 4 bits/digit.

The modified BCD number should be in the AC at time of entry. The con-
verted binary digits are summed and placed into the AC upon exit.

The calling sequences for both entries are:

alpha TSX

+1

$BCTB (or $BCTB1)

Normal return

5-53

MC 63-4

J SAVE INDEX JREGISTERS NO. 4 AND I

TAKE WORD (TO BE
CONVERTED) FROM

AC AND STORE IN
TEMPORARY STORAGE

LOCATION

I
STORE ZERO IN WORD I

TO CONTAIN SUM I

CONVERT 2 SIGNIFICANT
DIGITS FROM MODIFIED
BCD (4 BITS/DIGIT) TO

BINARY. SUMAND
STORE IN APPROPRIATE

WORD

CONVERT NEXT SIGNI FI-
CANT DIGIT FROM

MODIFIED BCD
(3 BITS/DIGIT) TO

BINARY. SUM AND STORE
IN APPROPRIATE WORD

CONVERT FINAL SIGNI-
FICANT DIGIT FROM

/V_)DIFI ED BCD
(4 BITS/DIGIT) TO
BINARY. SUM WITH

APPROPRIATE WORD

STORE SUM lIN AC

RESET INDEX IREGISTERS 4 AND 1

SAVE INDEX
REGISTERS NO. 4 AND I

TAKE WORD (TO BE
CONVERTED) FROM

AC AND STORE IN
TEMPORARY STORAGE

LOCATI ON

STORE ZERO IN WORD
TO CONTAIN SUM

CONVERT I SIGNIFICANT
DIGIT FROM MODIFIED
BCD (I BIT/DIGIT) TO

BINARY. SUM AND
STORE IN APPROPRIATE

WORD

FIGURE 5-9. BCTB/BCTB1 PROGRAM FLOW CHART

5-54

MC 63-4

5.11 BCD WORD CONVERSION PROGRAM (B) (BCTBI/BCTBJ)

This subroutine of HSOP1 converts modified BCD numbers to fixed-point
binary numbers. The modified BCD numbers are in one of two prescribed
formats, which are prerequisites for proper entry into the subroutine.

The flow chart for BCTBI/BCTBJ is shown in Figure 5-10.

The modified BCD numbers are in 4 bits/digit format. If the input number
is not preceded by a sign, the subroutine is entered through BCTBI. If the

number is preceded by a sign, the subroutine is entered through BCTBJ. In
this latter case, the appropriate sign is set in the AC. However, both subrou-
tines convert, sum the digits, and place the fixed-point binary numbers into the
A C upon exit.

The calling sequences for both entries are:

alpha TSX $BCTB1 (or SBCTBJ)

+ 1 Normal return

5-55

MC 63-4

SAVE INDEX

REGISTERS

NO. 4 AND I

TAKE WORD (TO BE
CONVERTED) FROM AC

AND STORE IN
TEMPORARY STORAGE

LOCATION

STORE ZERO

IN WORD TO

CONTAIN SUM

CONVERT ALL SIGNIFICAN[
DIGITS FROM MODIFIED

BCD (4 BITS/DIGIT) TO
BINARY. SUM AND STORE
RESULT IN APPROPRIATE

WORD

STORE SUM
IN AC

RESET INDEX

REGISTERS 4 AND I

FIGURE 5-10.

SAVE INDEX

REGISTERS

NO. 4 AND I

TAKE WORD (TO BE
CONVERTED) FROM AC

AND STORE IN
TEMPORARY STORAGE

LOCAT I ON

STORE ZERO

IN WORD TO

CONTAIN SUM

SET SIGN OF AC TO

BE THE SAME AS

THE WORD TO BE CON-

VERTED AND STORE IN

APPROPRIATE WORD

STORE FOUR 4-BIT DIGITS

IN SEPARATE WORDS

OF TEMPORARY

STORAGE BUFFER

jl CONVERT TO BINARY

BY SUMMING

AND STORE RESULTS

N APPROPRIATE WORD

BCTBI/BCTBJ PROGRAM FLOW CHART

¢1

5-56

MC 63-4

5.12 TIME WORD CONVERSION PROGRAM (A) (TISWS)

This subroutine of HSOP1 converts a modified BCD number representing a
time (in hours, minutes and seconds) to a binary number representing the same
time (in fixed-point seconds).

The flow chart for TISWS is shown in Figure 5-11.

The modified BCD number, placed in the AC when the subroutine is entered,
is given in the following format:

1 bit

2 bits/digit -
4 bits/digit -
1 bit

3 bits/digit -

4 bits/digit -
1 bit

3 bits/digit -

4 bits/digit -

sign for hours
tens of hours
unit of hours

sign for minutes
tens of minutes
unit minutes

sign for seconds
tens of seconds
unit seconds

Each digit is converted and/or scaled to its appropriate equivalent in fixed-

point seconds with the correct sign. The binary equivalents (with sign) are
summed and stored in the AC when the program exits.

The calling sequence is:

alpha TSX STISWS

+1 Normal return

5-57

MC 63-4

SAVE INDEX
REGISTER

NO. 4

TAKE TIME WORD
(TO BE C]ONVERTED)
FROM AC AND STORE

IN TEMPORARY
STORAGE LOCATION

STORE ZERO
IN WORD TO

CONTAIN SUM

I

I
TAKE HOURS TENS, HOUR

UNITS, MINUTES TENS,
MINUTES UNITS, SECONDS

TENS, SECONDS UNITS
AND STORE SEPARATELY
WITH RESPECTIVE SIGNS

CONVERT HOURS
INTO SECONDS

WITH SIGN
(FIXED-POINT)

SUM & STORE

CONVERT MINUTES
INTO SECONDS

WITH SIGN
(FIXED-POINT)
SUM & STORE

ADD GIVEN SECONDS
TO SUMMED

SECONDS WITH
SIGN

SUM & STORE

J STORE SUMIN AC J

t
REGISTER NO. 4

FIGURE 5-11. TISWS PROGRAM FLOW CHART

5-58

MC 63-4

5.13 TIME WORD CONVERSION PROGRAM (B) (HMSTS)

This subroutine of HSOPI converts a modified BCD number, representing a
time, to a binary number representing the same time (in fixed-point seconds).

The flow chart for HMSTS is shown in Figure 5-12.

The modified BCD number, placed in the AC when the subroutine is entered,
is shown in one of the following two formats:

Format i Format 2

2 bits/digit - tens of hours
4 bits/digit - unit hours
3 bits/digit - tens of minutes
4 bits/digit - unit minutes

2 bits/digit - tens of hours
4 bits/digit - unit hours

3 bits/digit - tens of minutes
4 bits/digit - unit minutes
3 bits/digit - tens of seconds
4 bits/digit - unit seconds

Each digit is converted and/or scaled to its appropriate equivalent in fixed-
point seconds. The binary equivalents are summed and stored in the AC when
the program exits.

The calling sequence is:

alpha TSX $HMSTS

+1 Normal return

5-59

MC 63-4

STORE
INDEX

REGISTER
NO. 4

L TAKE WORD (TO BE

CONVERTED) FROM AC
AND STORE IN

TEMPORARY STORAGE
LOCAT ION

FIGURE 5-12.

STORE ZERO
IN WORD TO

CONTAIN
SUM

t
TAKE HOURS TENS,

HOURS UNITS, MINUTES
TENS, MINUTES UNITS,
SECONDS TENS, AND
SECONDS UNITS AND
STORE SEPARATELY

t
CONVERT HOURS

INTO SECONDS
(FIXED-POINT)

SUM & STORE

t

CONVERT MINUTES I

INTO SECONDS
(FIXED-POINT)
SUM & STORE

t
ADD GIV EN

SECONDS TO
SUMMED SECONDS

AND STORE

t
STOR E SUM I

IN AC I
t

RESET INDEX iREGISTER NO. 4

HMSTS PROGRAM FLOW CHART

5-60

MC 63-4

5.14 UNIT CONVERSION PROGRAM (GCNVE)

This subroutine is used by HSOP1 to convert and scale high-speed output
from granular values to significant standard values. The high-speed output may
be from the strip chart (launch phase only), plotboard 3 (orbit phase only),
and/or from the wall map and plotboards 1, 2 and 4 (all phases).

The flow chart for GCNVE is shown in Figure 5-13.

The address of the first location in the buffer to be converted is given in

the PZE of the calling sequence. The buffer contains all high-speed output data
for conversion, then the program is entered through GCNVE. The AC contains
a phase indicator and the MQ contains an odd-even indicator.

The program stores the phase and odd-even indicator from the AC and MQ,
saves the indices and stores the complement of the first word of the address of
the buffer. The program then converts all the aforementioned data according to
phase, odd-even indication, and limits set up on parameters (D and H of plot-
board 2 in launch and abort phases and V/VR of plotboard 1 in launch phase).

The buffer area now contains all converted and scaled high-speed output
data when the indices are reset and the program returns control to HSOP1.

The calling sequence is:

alpha TSX

+1 PZE

+2

$GCNVE

(address of first location in buffer to be
converted)

Normal return

5-61

MC 63-4

l STORE PHASE INDICATOR]& ODD - EVEN INDICATOR

NO

i SAVE INDICES AND LOAD I
COMPLEMENT OF OUTPUT

ADDRESS IN LOCATION

LAUNCH PHASE)

YES

CONVERT ALL STRIP CHART
DATA FROM GRANULARITY

VALUES TO STANDARD
VALUES

CONVERT ALL WALL MAP

DATA (¢& X)FROM
GRANULARLY VALUES TO

STANDARD VALUES

ODD OR EVEN FRAME

EVEN

J SKIP ALL DIGITAL DISPLAYDATA

1.
r

) ODD

I SCALE r-'_',7, AND

V/V R FROM DIGITAL

DISPLAYS AND STORE IN TEM-

PORARY STORAGE LOCATIONS

I

R TEST FOR ORBIT AND _ ORBIT OR REENTRY

%,

EENTRY PHASE DISPLAYS]

LAUNCH
OR ABORT

CONVERT PLOTBOARD 4

DATA(_&X) FROM GRANU-
LAR STANDARD VALUES

()
FIGURE 5-13. GCNVE PROGRAM FLOW CHART (Sheet 1 of 4)

5-62

MC 63-4

C

C

I
C

I CONVERT PLOTBOARD 4

DATA FROM GRANULAR

VALUES TO STANDARD VALUES

I ,_,__o_oo,_o_o,_,I
t

C TE'TFO"LAU"C"O"),BORTP.A,EO.,PL.Y,
LAUNCH

CONVERT Y'YNOM ON PLOT-
BOARD 2 FROM GRANULAR

VALUES TO STANDARD VALUES

I=

C

ABORT

CONVERT D&H ON PLOT-
BOARD 2 FROM GRANULAR

VALUE TO STANDARD VALUE
USING BOTH SETS OF

CONVERSION CONSTANTS

t
IS D GREATER THAN 60?

YES

R-R=H,

t NO

R-R=H 2

NO

_YES

J

NO

IR-R-H,I = DJFF, JIR-R-H_I = DIFF_

t DIFF2 >
DIFF,

DIFF, : DIFF 2)

--- DIFF 1 >DtFF 2

J STORE D2 & H2 VALUES IAS D&H FROM PLOTBOARD 2

t_
TEST FOR LAUNCH OR "_

ABORT PHASE DISPLAYS J

LAUNCH

ABORT b Q

STORE D,& H, VALUES
AS D&H VALUES OF

PLOTBOARD 2

FIGURE 5-13. GCNVE PROGRAM FLOW CHART (Sheet 2 of 4)

5-63

MC 63-4

(ORBIT OR

REENTRY PHASE

ORBIT

CONVERT PLOTBOARD3

DATA (_.p, re, & e)
FROM GRANULAR

VALUES TO
STANDARD VALUES

t
CONVERT a- _ON

PLOTBOARD 2 FROM
GRANULAR VALUES

TO STANDARD VALUES

CONVERTt e&h ON
PLOTBOARD 2 FROM
GRANULAR VALUES

TO STANDARD VALUES

CONVERT PLOTBOARD 1

DATA (R- R& V) FROM

GRANULAR VALUES

TO STANDARD VALUES

RESET INDICES

FIGURE 5-13.

REENTRY

J SKIP PLOTBOARD 3DATA

GCNVE PROGRAM FLOW CHART (Sheet 3 of 4)

5-64

MC 63-4

V/V R > .9 1

CONVERT V/V R & Y
GRANULAR VALUES

(V/V R>.9) TO
STANDARD VALUES

?
(v,vR)v,vR

_V/V R > 19

V/V R =< .9 t

< .19

CONVERT V/V R & y
GRANULAR VALUES

(V/V R =< .9) TO
STANDARD VALUES

CONVERT V/V R & Y
GRANULAR VALUES

(V/V R <.19) TO
STANDARD VALUES

FIGURE 5-13. GCNVE PROGRAM FLOW CHART (Sheet 4 of 4)

5-65

MC 63-4

5.15 DISCRETE EVENT PROCESSOR PROGRAM (GETME)

GETME searches the second file of the high-speed input tape (B4) created
by SORTER from data on the Mercury Programming System log tape. This
second file contains a record of the occurrence of seven discrete events. The

information located on these events is placed in COMMON storage for reference
by Monitor. However, the Postflight Reporter Program cannot continue beyond
the GETME program if the first word of this second file, the GMT of liftoff, is
not found.

The flow chart for GETME is shown in Figure 5-14.

5.15.1 Input Requirements

The input to GETME is the second file of the B4 tape created by the SORTER
program. This file contains a record of all data pertaining to the occurrence
of seven discrete events.

5.15.2 Output Requirements

GETME records the following information about the discrete events:

a) Greenwich Mean Time of liftoff (GMTLO).

b) Number of retrorockets fired.

c) Elapsed time from liftoff to sustainer engine cutoff (SECO).

d) Time of abort inception referenced to liftoff.

e) Time of orbit inception referenced to liftoff.

f) Time of reentry inception referenced to liftoff.

g) Time of firing first retrorocket referenced to liftoff.

This information is placed into COMMON storage before the exit of this program.

5.15.3 Method

This program skips the first file on the high-speed input tape (B4) and
reads the second file for the data pertaining to the discrete events. If the rec-
ord is not accepted, the program places a one (1) in the error indicator.
Another attempt may be made at obtaining the data.

5-67

MC 63-4

When the record is accepted, a test is made for GMT of liftoff. If GMT of

liftoff is not found, the B4 tape is rewound, and the program returns to Monitor

with a one (1) in the error indicator. If GMT of liftoff is found, GETME then
tests for the existence of the other events within the record. If an event did not

occur, the particular location for that event is supplied with a minus one (-1).
All data is then transferred to COMMON storage, and all times are referenced

to GMT of liftoff (GMTLO).

5.15.4 Usage: Call Statement

CALL GETME (NOYES)

NOYES is an error indicator:

1 indicates an error in tape setup

2 indicates normal return

5-68

MC 63-4

REWIND B-4
TURN OFF E.O.F.

LIGHT AND
RESTORE INDICES

t
STORE NOYES

INDICATOR

SAVE INDICES
SET REDUNDANT

INDICATOR=0

REWIND B-4

l
STORE 10 IN XR1

READ 1ST FILE OF
B-4 TAPE (HS INPUT

DATA) WITH NO
TRANSMISSION

INTO CORE

l
READ RECORD OF I

2ND FILE i

INTO CORE i

FIGURE 5-14. GETME PROGRAM FLOW CHART (Sheet 1 of 2)

5-69

MC 63-4

(' ASGMTOFLIFTOFF BEEN
FOUND

t YES

I STORE 2IN INOYES INDICATOR

t
STORE GMT OF I

LIFTOFF (GMTLO) IIN COMMON

I

STORE 1 IN I
NOYES IINDICATOR

t
REHASNUMBEROF NO_I

TROS FIRED
B EE_-__,_ FOUND

f YES

STORE NUMBER I

OF RETROS FIRED
IN COMMON

(NORET)

STORE ELAPSED
TIME OF SECO

IN COMMON
(TSECOl)

!
!

I STORE-1 IN I

t=
S TIME OF REENTRY_
HASE INCEPTION}

BEEN FOUND _,_

t YES

STORE TIME OF
REENTRY PHASE

INCEPTION
REFERENCED TO

GMTLO IN COMMON

I

FACTOR-7 (COMMON)

<5

STORE ZERO I
IN COMMON

(NORET) !
(H_S._OF,.__s

TIME BEEN FOUNDJ _

STORE TIME OF
1ST RETROFIRE

REFERENCED TO
GMTLO IN COMMON

NO

STORE-I IN ITRETRO (COMMON)

I ._

!
I STORE-1 INFACTOR-6 (COMMON)

NO_AS TIMEOFABORT'_
{PHASE INCEPTION

_. BEEN FOUND J

I f YES
STORE TIME OF
ABORT PHASE

INCEPTION
REFERENCED TO

GMTLO IN COMMON

NO _----
fHAS TIME OF ORBIT_

-_ PHASE INCEPTION J

, BEEN FOUND ,_

t YES

STORE TIME OF
ORBIT PHASE

INCEPTION
REFERENCED TO

GMTLO IN COMMON

FIGURE 5-14. GETME PROGRAM FLOW CHART (Sheet 2 of 2)

5-70

IVJL _ _JU ----J_

5.16 HIGH-SPEED OUTPUT PROCESSOR PROGRAM (DONOUT)

DONOUT processes the high-speed output tape (A4 and/or A5), which con-
tains the data removed from the Mercury Programming System log tape and un-
packed by SORTER. DONOUT removes the data from the A4 (or A5) tape ac-
cording to a predetermined time and flight phase. It places available data into
locations of COMMON storage corresponding to the specific high-speed output
quantities.

The flow chart for DONOUT is shown in Figure 5-15.

5.16.1 Input Requirements

The input to this program is high-speed output data written on the A4 tape
(and A5 tape if enough room is not available on a single tape). The data is in
44-word records. These records consist of 10 words of heading and 34 words
of decoded data. At the physical end of an A4 (or A5) tape is a single end of
file. At the logical end of all tapes are two ends of file.

A closed subroutine called BRINR is also used within DONOUT.

5.16.2 Output Requirements

DONOUT places into COMMON storage the high-speed output messages

that drove the displays at Cape Canaveral. These messages are obtained accord-
ing to a unique time tag. In the case of processed information, the time tag is
the vector time associated with the input message which gave rise to the output.
If such a vector time exists, the data source and vector time are output. If the
vector time does not exist, an error return is indicated. Then, if no processed

information is available, log time is used instead of vector time.

5.16.3 Method

DONOUT reads a high-speed output record from the A4 (or A5) tape. The
phase (launch, abort, orbit or reentry) is determined and compared with the
phase requested in the call statement (see below). If the phase of the data is
numerically less than the phase requested, the phase requested is further down
the tape and another record is read. If the phase of the data is greater than the
phase requested and if the requested phase is different from the one previously
requested, then the A4 (or A5) tape is rewound so that a search may be made
for the new phase.

If the phase of the high-speed output block is the same as the one requested,
the time of the output message is examined. If the time of the message is less

I
5-71

MC 63-4

than the time requested, the next record is read. If the time of the message is

greater than the time requested, the program backspaces until a message of the
correct time and phase is determined. If the time requested for the particular
phase does not exist within the phase, the time closest (but earliest) to the re-

quested time is accepted. If this phase time is not within a reasonable toler-
ance, an error is indicated.

Should the tape contain data from one phase, receive data from a second
phase and subsequently have more data from the original phase, the program
backspaces the tape to determine whether there have been two changes of

phase. If possible, DONOUT will locate the last message in the proper phase
and present it for decoding.

When records are read from the A4 (or A5) tape, tests are made for re-
dundancies and ends of file. To read the next record, a closed subroutine called
BRINR is used within DONOUT. This routine reads in the next record, ex-

amines for redundancy and end of file, and then exits. If redundancies exist,
backspacing action is taken to reread these records. If the records can be re-
read, they are used; if they cannot be reread, the tape spaces ahead to the next
record.

If an end of file on A4 (or A5) exists, the tape is read a second time to de-
termine whether a second end of file is on it. If so, this is the end of the data
and an exit is made. If only one end of file exists on the tape, the physical end
of the tape is reached and the alternate tape should be used. The program has
the capacity to switch back and forth between A4 and A5 until enough tapes have
been read to process all the data.

5.16.4 Usage: Call Statement

CALL DONOUT (TEMPO1, J23, JERROR, NDATA)

TEMPO1 is a time indicator containing the requested vector time.

J23 is a phase indicator containing one of the following:

1 indicates launch phase (MA or MR)
2 indicates abort phase (MR)
3 indicates orbit phase (MA)
4 indicates reentry phase (MA)
5 indicates high or medium abort phase (MA)
6 indicates low abort phase (MA)

JERROR is an error indicator containing one of the following:

1 indicates no more output on the log tape for the requested phase
2 indicates normal return and normal transmission

3 indicates redundancy

5-72

UO --'_

NDATA is a data source indicator in which:

1 indicates IP 7094 data
2 indicates B-GE data
3 indicates raw radar data

5-73

MC 63-4

I READ INPUT

RECORD FROM
A-5 TAPE

I .
EDUNDANCY ND OF FILE

I READ IN
RECORD FROM

A-5 TAPEINCREMENT

REDUN. COUNT

BY ONE

1
COUNT ._ l0

I BACKSPACE AND I
TRY TO REREAD

RECORD

1
REDUNDANCY_

U

SET

REDUNDANCY

COUNT = 0

6

1
D END OF FILE

J

i SET READ

I INDICATOR

I = ZERO

1

REWIND AND
UNLOAD A4

SAVE INDEX REGISTERS

STORE REQUESTED TIME

FROM COMMON.

STORE REQUESTED

PHASE FROM CALLING

SEQUENCE

1

INITIALIZE

COUNTERS AND

INDICATORS

TO ZERO

1 _,.,T.L,_OUT-(HFIIRSpTRo/MREA PUT BUFFER TO
ZERO EXCEPT

T M OTPTBF(20) = 4
IN DECREMENT

,STORE ZERO

IN READ

INDICATOR

-_O,.D,C_TO_'_:o_ 1

I READ INPUT [
RECORD FROM

A-4 TAPE

1
"X .o f "h"_° _

(ENDOFF.EJ--'_REDUNDANC_p'_

l,ES (_)YES
RECORD FROM

A-4 TAPE

1

_ 1"° ''YES'" I "EWIN°I2ND END OF FILE A-4 TAPE

v ¢ 0 REWIND

g,,_tgR _ A-'TAPE

= NON_ERO _._

FIGURE 5-15. DONOUT PROGRAM FLOW CHART (Sheet 1 o[7)

5-74

MC 63-4

PHASE REQ.=

OF DATA

I CONVERTS |

TIME OF DATA J--
TO FLOATING J

POINT SECSJ

>

UNACCEPTABLE
FC PHASE NUMBER

NO.

LE

PHASE NO.

INPUT DATA:
HASE REQUEST.

PHASE REQ.< PHASE OF DATA

PHASE REQ. =

:ABORT PHASE

PREV
PHASE REQ, FOR1ST TIME

PHASE REQ.> PHASE OF DATA

ANY OTHER TIME

TMDTM

DATA
TIME ED

SET N= 3

REWIND A4 AND

A5 (IF NECESSARY)

USED

A-4

BACKSPACE N

RECORDS ON

TAPE

BEGINNING

OF TAPE

NO

READ IN

RECORD OF
FROM A4

REDUNDANCY

YES

SET READ

SET N = 2

N RECORDS ON BEGINNING
AS TAPE OF TAPE

YES

YES

NO

FIGURE 5- 15. DONOUT PROGRAM FLOW CHART (Sheet 2 o[7)

5-75

MC 63-4

I RESETINDEX J

REGS. STORE IIN

RETURN

INDICATOR

(_ PHASE OF PRES. MESSAGE =
UNACCEPTABLE PHASE OF PREV. MESSAGE

)
SET PHASE J = PHASE REQ. REQ.

IINDICATOR

=0

READ IN J

RECORD FROM

A4 OR A5

ACCORDINGLY

I t

YES (REDUNDANCY)

_ NOUNACCEPTABLE PHASE OF DATA

Q PHASE NUMBER (TEST PHASE) = PHASE REQ- Q

I HASE OF DATA
PHASE REQ.

>C,MEOFDAT_%_____(___: TIME REQ. J _J

j ACKSPACE2

RECORDSON

A4 OR A5

ACCORDINGLY

l BACKSPACE 2
RECORDS ON

A4, OR A5

IREAD,NRECORDI
FROM A-4 OR A-SJ

ACCORDINGLY |

1
BEGINNING _READ IN REC.OF TAPE FROM A4

JNOIYESAS

J READ IN J
RECORD FROM

A4 OR A5

t
-re(REDUNDANCY)

t UNACCEPTABLE

(. TESTPHASE) PHASE NUMBER Q

OF DATA i

PHASE OF DATA 1 PHASE

PHASE REQ. _ PHASE REQ. m-

>

("rTIME OF DATA_ -

I RESETINDEXREGS.STORE J _k__:TIMEREQ. J4 IN RETURN INDICATOR

UNACCEPTABLE

I iPHASE OF DATA

OF DATA= PHASE REQ. = Q_PHASE REQ.

I SETREAD I

INDICATOR

=0

L

FIGURE 5-15. DONOUT PROGRAM FLOW CHART (Sheet 3 o[7)

5-76

_'" 63 4IVl _,

(_ YES (

YES

TIME REQ. -<

7
I

BACKSPACE 2 RECORDS J

ION A4 OR A5

ACCORDINGLY

BEGINNING OF TAPE)

NO

I
READ IN RECORD J

IFROM A4 OR A5

ACCORDINGLY

REDUNDANCY)

NO

T_ME OF DATA:TIME REQ._

PHASE OF DATA _ TIME REQ.>

Q_PHASE REQ. (TEST PHASE j

UNACCEPTABLE

PHASE NUMBER _Q

I PHASE OF DATA
_ PHASE REQ.

I READ IN RECORD]
FROM A4 OR A5

ACCORDINGLY

TEST PHASE

UNACCEPTABLE

PHASE NUMBER _Q

,l
YES

_' (REDUNDANCY)

NOPHASE OF DATA

_ PHASE REQ. /f

\
PHASE OF DATA

= PHASE REQ.

_ > _IME OF DATA : TIME REQ_

FIGURE 5- 15. DONOUT PROGRAM FLOW CHART (Sheet 4 of 7)

5-77

MC 63-4

?
STOREPHASEI

AND TIME I

OF DATA I

J.
[STORESTRIP1LAUNCH('_ ('C%
I _'HART DATA II F _ ORBIT

'N OU1PUT I"_ TEST PHASE) _ Jt I I
BUFFER I ,_ _ | I BRINGS IN THE

j. _ALO_TI I.,;.°"_ .RINR \--I NEXTRECORDI

." IO J
[.OUTPUT BUFFER I (S) I STORE GTRS I _ _ UNACCEPTABLE

EVEN v IN COMMON TEST PHASE m_._)t I I L/ 2 PH
o.un= _ml_ PHASE OF .o(OD_O._.E-_EN"r----IINOUTPUTI 1 DATA-PHASEI ""_S e

_. PRAMt J [I_UFFER I / REQ- I ;_ _%_..0_-
/ nnn l ' I ',-uNv. o. b/URI.- " I q'4.e_...O.d
I -_ & I ORBIT NO. IN l l "J_'_";'_'.

ICON_.R'-_ TO1 I STORE JELTA T L COMMON I l "t'6"Q'_"'_ f "_
I • STORE,NI I UTPUT I] fold X EVEN
I OUTPUTBUFF.I I BUFFER I i " /
I I I I l | I STORE GMTLC I _. FRAME .._ I

t t I ,NCOMMONI ODOI /
SCALE AND l ISTORE A'PPROP-I _, J

ICO_VRERT GAMMA| IRIATE INDICATO_ 1CONY [I _
I ADIANS & / I FOR "1 I . PHI-IP & I _- } I r. j
I STORE IN OUT / I RECOvI:R'_ / I -AMD I V V" L A-IP TOIPUTBUFEERJAREA/ IRAD'A.SSTORE

l L'NCOMMONI
I SCALE & CONV1 • '1 J STORE GAMMA J

TO RADIANS & J i IN SCALE & 0OUTPUT C NV.

STORE IN OUT" I [
I PUTBUFFER BUFFER] IR-R&HATOFT. I

• / / AND STORE I

t ! / IN COMMON I
CAPABITY IN IN OUTPUT
STORE ORBIT

BUFFER

OUTPUT BUFF.

I "-J STORE APPRO.

I SCALE V/v R & I_-J'ND ,N OUTPUTSTORE IN OUT-I/ BUFF. DECRE.
PUT BUFFER

I/

t ' ____L__
(GO-NO-OO_

NDICATOR : O_

I STORE A 4]

INDICATOR IN
DECREMENT OF
OUTPUT BUFF.

AS GO-NO-GO
INDICATOR

STORE PHI & I
LAMDA MAX, ETCI

IN OUTPUT I

BUFFER I

SCALE AND I

CONVERT V-VGOI
TO PROPER I
UNITS AND I

STORE IN OUT- I
PUT BUFFER I

'STORE L.O.N.

IN COiMON

STORE ORBIT I
CAPABILITY

IN COMMON

STORE PHI-MIN I

LAMDA-MIN L A NI'DA

SUB P, ECCEhlTRICITY
& A-J_ IN COMMON

,+
STORE PRES. [
POSITION, T &
A N COMMON

>--
BRINGSIN

NEXT RECORD

FROM TAPE

(I

FIGURE 5-15. DONOUT PROGRAM FLOW CHART (Sheet 5 o[7)

5-78 I

MC 63-4

(_ UNACCEPTABLE
PHASE NO.

BUFFER " J I 1 ORBIT

ABORT OR

-"_ REENTRY

STORE D AND H [I STORE
IN OUTPUT EGT

PHASE OF DATA

¢ PHASE REQ.

BUFFER

t
G___ TESTDATA"_9,
I_,_SOURCE,NO,C.I I
t OTHERSt

SETDATAJ j SETDATASOURCE SOURCE

INDICATOR = 1 INDICATOR = 2

r

ISET DATA SOURCE

,ND,C,_TORI

J STORE ALL DE- J

SIRED OUTPUT FR.

OUTPUT BUFFER

INTO COi_U_ON

,[=
TORE TIME, PHASE,J

RETURN, & DATA J

SOURCE INDIC. J
IN CALLING SEQ. I

STORE GMTRC 1, 2,_

IECTRC],2,3, GMTRS_

I AND ICTRC IN /

I COMMON I
:i

STORE APPRO. I
RECOVERY AREA

CODE IN COMMON

(_V EVEN I

(fODD ORE EN_.J

FRAME _,_ J

ODD
|

STORE GTRS & J
I

GMTLC IN OUTPUT J

BUFFER I

t
SCALE & CONVERT I
PHI-IP & LAMDA-tP I

AND STORE IN I
OUTPUT BUFFER J

SCALE R-R I

AND STORE IN
OUTPUT BUFFER

_A,EANDCONV.I
t_A_TORAD'A_I

AND STORE IN I
OUTPUT BUFFER J

1
STORE VELOCITY

IN OUTPUT

BUFFER

I"

STORE PRESENT I

POSITION IN

OUTPUT BUFFER

STORE GMTRS

ECTRC. AND

ICTRC IN OUT-
PUT BUFFER

I STORE APPRO-

PRIATE RECORD

AREA CODEIN
OUTPUT BUFFER

STORE PHI-IPL

LAMDA-I P, R-R,

AND VELOCITY

IN OUTPUT BUFF.

I STORE G TL I SCALE& CONV. ISCALE& CONV.

_ODD=DOR E_EN_.I_INCoO.Nc_'G_icB;IITI]PHI-IP& LAMDA- J R-R TO FT.&_'_IlPTORADIANS& _1 STOREIN
JsTOREINCOM' I coMMoN

I__ISCALE CONV'
l GAiV_4A TO RAD. STORE I

| AND STORE IN & VELOCITY

| COMMON IN COMMON

$
FIGURE 5-15. DONOUT PROGRAM FLOW CHART (Sheet 6 of 7)

5-79

MC 63-4

l BRINR /
CLOSED SUBROUTINE

OF DONOUT

t
I _°_' i

 :sT ENDOF
NO

J SETRD,N=IJ

END OF TAPE.

J TURN OFF JREDUNDANCY

().oTEST RDIN = 0

YES

READ A4 I

t
YES _EST END OF FILE_

t
READ A5 I

NO

EST EDUNDANC_

THE TENTH TRY **_-_/ !
J BACKSPACE A4ONE RECORD

!

TEST END OF FILE__)

t NO

TEST REDUNDANCY _

YES

TEST IS THIS _._._E-_

THE TENTH TRY

t No

BACKSPACE A5 JONE RECORD

READ A5 J

TEST END OF FILE_

t NO

I REWIND AND IUNLOAD A4

t
J SETRO,N=01

FIGURE 5-15. DONOUT PROGRAM FLOW CHART (Sheet 7 of 7)

5-80

MC 63-4

5.17 HIGH-SPEED INPUT PROCESSOR PROGRAM (DONIN)

This program processes the high-speed input tape (B4) created by SORTER
with data from the Mercury Programming System log tape(s). The position and
velocity vectors with an associated vector time and the processed data are

placed into COMMON storage for later use in any mission situation that is
characterized by associated high-speed input.

The flow chart for DONIN is shown in Figure 5-16.

5.17.1 Input Requirements

Two parameters in the calling sequence of DONIN specify the vector time
and data source of a record on the high-speed input tape. In addition to these
input parameters (see subsection 4.21.4), the B4 tape written by SORTER is
input to DONIN.

following format:

Word 1:

Words 2-5:

Words 6-11:

Word 12:

Words 13-15:

Words 16-18:

Words 19-20.-

This program assumes 20-word records on this tape with the

Data Source (an octal integer), i.e.,

000 001 000 000 B-GE Guidance computer
000 002 000 000 IP 7094 computer
000 003 000 000 Raw radar

Remaining ID for message

Telemetry data and time tag

Vector time (floating-point seconds)

Position vector (floating-point feet)

Velocity vector (floating-point feet/second)

Discrete events data and time tag

5.17.2 Output Requirements

DONIN reads out the three components of the position vectors and the three
components of the velocity vectors with the associated vector time. These are

read into COMMON storage locations (see subsection 4.21.4) indicated by the
data source.

5-81

MC 63-4

5.17.3 Method

The high-speed input tape is searched until the data source requested in the
call statement is matched by a data source in one of the B4 records. Then, if

the time of the high-speed input message being inspected is less than the time
requested, control is transferred back to read in the next record. If the time of
the message is greater than the time requested, the program backspaces until
a message of the correct time and phase is determined. If the beginning of the
B4 tape has been reached and the time requested is not found, an error return

exit is made from the program.

5.17.4 Usage

a) Call Statement:

b)

CALL DONIN

TEMPO1

NDATA

NOY ES

(TEMPO1, NDATA, NOYES)

contains the requested vector time

is the data source indicator:

1 specifies IP 7094 data

2 specifies B-GE data
3 specifies raw radar data

is a return indicator

1 indicates an unsuccessful return; a time

and data source corresponding to the re-
quested time and data were not found on B4.
Vectors and vector time were not transferred

to COMMON storage.

2 indicates a successful return; a time and
data source corresponding to the requested
time and data source were found on B4.
Vectors and vector time were transferred

to COMMON storage.

Storage--the COMMON storage locations used for the position and
velocity vectors and vector time are as follows:

1) IP 7094 position and velocity vectors: XIP, YIP, ZIP, XIP1, YIP1,
ZIP1.

2) B-GE position and velocity vectors: XI, ETA, ZETA, XI1, ETA1,
ZETA1.

3} Vector time: T

5-82

SAV E

INDEX

REGISTERS

I SAVE REQUESTED

TIME + DATA SOURCE

FROM CALLING

SEQUENCE

BEGINNING OF TAPE) NOINDICATOR ON

YES

I READ OVERBEGINNING
OF TAPE

J

rt-

READ ONE 1TAPE RECORD

END OF FILE)

NOf REQUESTEDDATA-'N
| SOURCE = DATA SOURCE J

OF THIS RECORD h!

_YES

_ REQUESTED TIME =.__(_TIME OF THIS
RECORD

-Z

READ ONE

TAPE RECORD

1
END OF FILE

_YES

J BACKSPACE OVER ENDOF FILE + ONE RECORD

FIGURE 5-16. DONIN PROGRAM FLOW CHART (Sheet 1 of 2)

I
).o

MC 63-4

5-83

MC 63-4

YES

ilNDICATE UNSUCCESSFUL

J RETURN WITH A ONE iN

J THE ACCUMULATOR

(

B'.CKSPACETWORECORDSI
ON TAPE FOR A LESSER J

TIME I

BEGINNING)OF TAPE

REQUESTED DATA '_
RCE = DATA SOURCE
OF THIS RECORD _'

YES

REQUESTED TIME
= TIME OF THIS

RECORD

| --

t-

DATA SOURCE

NO

<

IP7094_

B-GE

TRANSFER B-GE
POSITION AND VELOCITY
VECTORS AND VECTOR

TIME FROM TAPE
RECORD TO COh_ON

STORAGE

TRANSFER IP7094
POSITION AND VELOCITY
VECTORS AND VECTOR

TIME FROM TAPE
RECORD TO COMMON

STORAGE

FIGURE 5-16.

r

J INDICATE SUCCESSFUL J
RETURN WITH A TWO
IN THE ACCUMULATOR

q
INDEX REGISTERS

DONIN PROGRAM FLOW CHART (Sheet 2 of 2)

5-84

MC 63-4

5.18 LAUNCH PHASE PROCESSOR PROGRAM (LAUNCH)

This program produces launch, abort, and reentry phase parameters for
the Postflight Report. This program is used when high-speed input data is

available. For the Mercury Atlas (MA) launch phase, this program uses high-
speed processed data from either the Impact Predictor 7094 computer or the

B-GE computer. LAUNCH also uses high-speed input data for Mercury Red-
stone (MR) launch and abort situations.

The flow chart for LAUNCH is shown in Figure 5-17.

5.18.1 Input Requirements

Two of the input parameters for this routine--J23, the phase indicator, and
NDATA, the input data source indicator--are transferred in the call statement.

The rest of the input parameters, along with the physical constants, are placed
into COMMON storage prior to entry. This data is used in the equations that

produce the output (equations are shown in subsection 4.22.3). In addition,
other processor programs are used by LAUNCH. These subordinate programs,
which are required for LAUNCH processing, are:

Atmospheric Density Processor Program (ATMOS)
B-GE Reference Frame Conversion Program (GECNV)
Stagnation Heat Rate Processor Program (HEAT)
IP 7094 Reference Frame Conversion Program (IPCNV)
True Inertial Coordinate Conversion Program (MERCNV)
Range From Launch Pad Processor Program (RFLP)

5.18.2 Output Requirements

The LAUNCH program reads data into COMMON storage before control is

returned to Monitor. The computation of these parameters involves the equa-
tions shown in subsection 4.22.3. The LAUNCH output parameters are used to

write the launch and abort phase paragraphs of the Postflight Report. They are
listed below in order of their appearance on the flow chart.

Radial distance of the spacecraft (r)
Height above spherical earth (r - _)

Speed in the inertial frame (Vi)
Geocentric latitude (Lc)
Geodetic latitude (L_)

1)
Height above oblate earth (he)

Flight path angle in inertial frame 0,i)
Longitude of spacecraft (k)

Heading angle in inertial frame (_)i)

5-85

MC 63-4

Headingangle in rotational frame (_be)
Speed in rotational frame (Ve)

Flight path in rotational frame (Te)
Mach number (M)

Reynold's number (RN)

Coefficient of drag (qD)

Local radial distance (rL)

5. i8.3 Method

The equations used to calculate the output of LAUNCH are given in order

of their appearance on the flow chart:

r-R = (r)-R

1

LC tan -I _2 + _

L D

e 2 = 1/(l-f) 2

a
e

x v= Jcos2 L C+ e 2sin 2 L C

he =r-x v

AL i = tan-1 {_/_)

Yi =sin-1 (_/Vi)

5-86

= = - r cos L C_e tan-l(Y/_')'wherey Yi (°e

2 •2V = ".2+ +z
e

We =sin -1 (_/V e)

M = Ve/C S

R N = Ve/_

2
qD = 1/2 P V e

a
c

rL= /cos 2 LC + (ac/bc)2 sin 2 L C

5.18.4 Usage: Call Statement

CALL LAUNCH (J23, DNATA)

The parameter J23 is a phase indicator.

1 indicates launch phase (MA and MR)
2 indicates abort phase (MR)

5 indicates high or medium abort phase (MA)
6 indicates low abort phase (MA)

NDATA is a data source indicator.

1 indicates IP 7094 data
2 indicates B-GE data

5-87

MC 63-4

(

IP709

IPCNV

TEST
DATA

SOURCE)
B/G E

p

GECNV)

J J J RADIAL DISTANCEr=V__X2. i-y__-2+Z._2 OF THE SPACECRAFT

i
r- R=(r)- ff - SPHERICAL EARTH

t

J V, V._.2+_2+__ 2 J J SPEEDINTHE= INERTIAL FRAME

t

$
FIGURE 5-17. LAUNCH PROGRAM FLOW CHART (Sheet I of 4)

5-88

MC 63-4

t

e2= I/(I- F)2% I

XV= VCO, 2 LC+. 2 ,in 2 LcF

he = r--xv /

J ,'_)t i = tan --1 (_/_) J

t

TESTR "_
NEGATIVE J

t YES

NO

GEOCENTRIC JLATITUDE

f FLATTENING J

coN:r_'AE_O"RT"D_AL /
DISTANCE FROM |

_ __Eo_c_. _j
HEIGHT ABOVE J

OBLATE EARTH |

-f TEST__)
--_ NEGATIVE

t YES

J _XI=AX,+2_ J

t FLIGHT PATH ANGLE IIN INERTIAL FRAME

NO

I _" =A_'i-Idet + Va t

(
I

t ,,

TEST Yi)NEGATIVE

t YES

Y = Yi--OJer cos L C

LONGITUDE OF JTHE SPACECRAFT

HEADING ANGLE [
IN INERTIAL FRAME

NO =(TEST;;) NONEGATIVE

t YES

I _i = _i + 2rr

!

t

EJt t "E'°"°'"°LEI_'e = t=n-1 _/_ WITH RESPECT TO
ROTATIONAL FRAME

6
FIGURE 5-17., LAUNCH PROGRAM FLOW CHART (Sheet 2 of 4)

5-89

MC 63-4

TEST

NEGATIVE

_ YES

I

J MACH NUMBER

J REYNOLD'SNUMBER

TEST _'

NEGATIVE

YES

t

t
ATMos)

t
(TEsT.oY.s=1)

t NO

F--tM_v.jcsI
t

--_ R N = V e /v

I I--IqD = _ P Ve 2

HEAT >

I

)
I

SPEED J

FLIGHT PATH JANGLE

YES

FIGURE 5-17. LAUNCH PROGRAM FLOW CHART (Sheet 3 o[4)

5-90

MC 63-4

?
I ttr':¢cos2LC_s,°2Lc-'-

LOCAL RADIAL
DISTANCE

FIGURE 5-17. LAUNCH PROGRAM FLOW CHART (Sheet 4 of 4)

5-91

MC 63-4

5.19 ORBIT PHASE PROCESSOR PROGRAM (ORBIT)

ORBIT produces orbit phase parameters for the Postflight Report. The

program is used where orbit displays are driven (there isno high-speed input).

The flow chart for the ORBIT program is shown in Figure 5-18.

5.19.1 Input Requirements

All input parameters and constants used in the ORBIT output equations are
placed into COMMON storage before control is transferred from Monitor.

5.19.2 Output Requirements

ORBIT produces certain orbit phase parameters and places them Into

COMMON storage prior to its exit. These ORBIT parameters are used to

write the orbit phase of the Postflight Report. They are listedbelow in the

order of their appearance on the flow chart.

Radial distance to the spacecraft (r)

Inertial velocity (Vi)

Semi-major axis (a)

Mean motion (_M)

Period (T)

Eccentricity (e)

Eccentric anomaly (E)

Semilatus rectum (p)

Inclination angle (i)

Longitude of the ascending node (l])

True anomaly (el)

Mean anomaly (Ma)

Elapsed time from perigee passage (tp)

Argument of perigee (a))

Height in equatorial plane between X and the projection of the space-

craft intothat plane (A Xi)

Geocentric latitude (Lc)

Height above the oblate earth (he)

5-93

MC 63-4

Earth-fixed velocity (Ve)

Earth-fixed flight-path angle (_,e)

Inertial flight-path angle (_i)

Earth-fixed longitude (k)

Inertial heading angle ($i)

Earth-fixed heading angle ($e)

Geodetic latitude (LD)

Height above spherical earth (r - R)

Angular rotation of _ (&_)

Angular rotation of t_ (_)

Semimajor axis less spherical radius (a - R)

5.19.3 Method

In order of their appearance on the flow chart, the equations required to
calculate orbital output parameters are:

/__2 _2 _2r = + +__

1

a _-

1 - e cos (E)

where ecos (E) = rV 2. - 1
1

_/M = i

a3/2

T = a 3/2 2_r

e = J(e sin (E))2 + (e cos (E))2

5-94

MC 63-4

wheree sin(E) = X X + Y Y+ Z Z

E e sin IE)]= tan-1 e cos (E)

p = (sp)2

where RX

tan-1 [sin (i)]cos (i)_]

SP

RY = -XZ_ + XZ
SP

Rz = XY - XY
SP

in(i=j_x 2 + RY2

cos (i) = RZ

= tan-l[sin (_)cos (_)

RX

sin (i)

RY
cos (i"_)- sin (i)

tan -1

where sin (D) -

81 =

]

5-95

MC 63-4

where cos (e l) -

P-1
r

e

sin (E)
e sin (E)

m

e

cos (E) =
e cos (E)

e

A = sin (E)

B

QX

= cos (E) - e

" a

= {AX BX__}-_-_-

QY = {A_ + B_ aSP

QZ g_ a= (A_ +

sin (81)=

M =
a

tp

where sin (_) =

A

_ QX+YQY+ _QZ
r

E - e sin (E)

T M a

2_

sin (U_)
tan-i cos (W)'

-QX cos (C$) - QY sin (_)

cos (E)

r

B

PX

PY

= sin (E) Vr_

= AZ_ - BX__

= AY_- BY_

5-96

MC 63-4

PZ =

cos (_)= PXcos (_) + PY sin (Q)

where C 1

1

L C

= 20925672.5

1 7an[
ztan

h
e

V
e

where VX

VY

_e

1

1

= C I r - 2
2

sin

= VV X2 + V y2+ _ 2

= x+Y oo
e

= .YY- _
e

f x'vx + vvy +Z z_-"Jsin-i r
V e

-1
sin x__+v++ z_-z_-"]r

Vi

= A_i - _¢t - Ua

-1
Cos

(Lc) I

5-97

MC 63-4

_e

-1
= COS E -]

r Z_--- ZV e sin(_e)

y2
V e cos (_/e) q/X__2 +__

L D
= tan -1

I TAN (L C) 1

\ ae/

(r - R--) = r -

-C 2 17M C 3 cos (i) T

C 4

where C 2
= 1623.48 x 10 -6

C 3

C 4 = (1 - e) 2

• C 2
2

C 3

17M-_4 (5 cos 2 (i) - 1) T

(a - H) = a - H

5.19.4 Usage: Call Statement

CALL ORBIT

5-98

COMPUTE r, Vi , a, t/M, T, e, E

PLACE E IN PROPER QUADRANT

COMPUTE p AND i J

PLACEi IN PROPER QUADRANT J

1
COMPUTE _ AND PLACEIN PROPER QUADRANT J

l
COMPUTE (_I AND PLACE IN PROPER QUADRANT

COMPUTE M a, tp, AND co

1
PLACE _ IN PROPER QUADRANT

FIGURE 5-18. ORBIT PROGRAM FLOW CHART (Sheet 1 of 2)

MC 63-4

5-99

MC 63-4

COMPUTE AAi

PLACE A)L i IN PROPER QUADRANT

COMPUTE LC, he, Ve,

Ye, Yi, _', _i,

We, LD

CONVERT a, ha, Ve, Vi, T,

tp TO PROPER UNITS

COMPUTE r-'_, _,,

AND a-_

FIGURE 5-18. ORBIT PROGRAM FLOW CHART (Sheet 2 of 2)

5-100

MC 63-4

5.20 REENTRY PHASE PROCESSOR PROGRAM (RENTER)

RENTER produces reentry phase parameters for the Postflight Report.
This program is used when reentry displays are driven (there is no associated
high-speed input). It is also used when abort displays are driven and there is
no associated high-speed input.

The flow chart for the RENTER program is shown in Figure 5-19.

5.20.1 Input Requirements

The phase indicator J23 is transferred in the call statement. All other in-

put parameters and constants used in the RENTER equations are placed into
COMMON storage prior to entry of the program. These equations produce out-
put for RENTER. This program also uses other processor programs, which
are:

Atmospheric Density Processor Program (ATMOS)

Stagnation Heat Rate Processor Program (HEAT)

True Inertial Coordinate Conversion Program (MERCNV)

Range From Launch Pad Processor Program (RFLP)

5.20.2 Output Requirements

RENTER outputs data for a phase indicator in its call statement (see sub-
section 4.24.4). The program also reads out reentry parameters that are
placed into COMMON storage before its exit. The computation of these param-
eters involves the equations shown in subsection 4.24.3. The RENTER output
parameters are used to write the reentry phase and sometimes the abort phase
paragraph of the Postflight Report. They are listed below in order of their
appearance on the flow chart.

Geocentric radial distance to the spacecraft (r)

Inertial velocity (Vi)

Angle in equatorial plane between X and the projection of the space-

craft into that plane (Aki)

Geocentric latitude (Lc)

Height above the oblate earth (he)

Earth-fixed velocity (Ve)

Earth-fixed flight-path angle (_e)

5-101

MC 63-4 G

Inertial flight-path angle (Ti)

Inertialheading (_i)

Earth-fixed heading (@e)

Earth-fixed longitude (k)

Geodetic latitude (L D)

Height above the spherical earth (r - R)

Mach number (M)

Reynolds number (R N)

Coefficient of drag (QD)

Local radius of the earth (r 1)

Reentry range from retrofire (SR)

5.20.3 Method

The equations used to calculate the output parameters for the RENTER are

shown below, in order of their appearance on the flow chart.

__.-__2+f +f

V i

-
L C

h
e

tan- 1 _ Z

f+f

_ F ae . ^ -_

rC1 L _11.__ f)_" sin2(Lc, J

where C 1 = 20925672.5

V
e

Jvx2+v_ + _

5-102

Q

q

MC 63-4

where VX

VY

_e

x+Y
e

Y-X_
e

sin-1 I

sin-1 I

XVX+..YVY+ver Z Z 1

• " 1
x_x+ XX+ _z

r

V i

1

_e

-1
COS

-1
---- COS

I r _- t V i sin (y i) 1v,cosI_)Jx_+ f J

[r _-- _Ve sin_,e) .]VecosI_e_JX2+_2

k

L D

(r - R) =

= _Xi - We t - v a

I tan (Lc) 1tan-1 (b /2

\ao /

r - R

V
eM

C
S

V
e

RN - v

5-103

MC 63-4

qD

r
e

2
1/2 pV e

a
e

o (sin2 (L_C)

s 2 (Lc) + b c

a C

-1
SR = 1/2 (r 1+ r 1 B) cos I cos (L C - L C B)

cos (Lc) cos (L C B) 1

5.20.4 Usage: Call Statement

CALL RENTER (J 23)

J 23 is a phase indicator

4 indicates reentry phase

5 indicates high abort phase (MA)
6 indicates low abort phase (MA)

5-104

COMPUTE r, Vi, _ _-i

MC 63-4

PLACE _,i IN PROPER QUADRANT

COMPUTE L c, he, V e, ye,'_i, _i, _e, _', LD

CONVERT r, a, Vi, AND Ve TO PROPER UNITS

J COMPUTE r - R"

ATMOS >

TEST ABOVE 90,000 METERS YES

I NO

COMPUTE M AND RN I SET M=0

RN=0

FIGURE 5-19. RENTER PROGRAM FLOW CHART (Sheet 1 o[2)

5-105

MC 63-4

<

<

COMPUTE

Qd

HEAT

TEST
PHASE

>

CONVERT

U S V t O_#

;_,;,, _
TO ENGLISH UNITS

COMPUTE

RFLP >

FIGURE 5-19.

COMPUTE

COMPUTE RETRO
BURN TIME

TEST HAS RETRO
BURNOUT OCCURRED

YES

COMPUTE

SR

NO

SET

FACTOR

FACTOR
FACTOR

RENTER PROGRAM FLOW CHART (Sheet 2 of 2)

(15)= L c
16)= _.-

I17)=,/

5-106

MC 63-4

5.21 NUMERICAL INTEGRATION PROGRAM (NUMIN)

The numerical integration program is used during the orbit and reentry
phases to compute position and velocity vectors along the trajectory. The inte-
gration within this program is done by the NOCPNI subroutine used by the God-
dard operational Mercury programs.

A flow chart of NUMIN is given in Figure 5-20.

5.21.1 Input Requirements

The input parameters used by NUMIN are transferred through the CALL
statement.

CALL NUMIN (MPHASE, IERROR, TT, XX, YY, ZZ, XXD, YYD,
ZZD, TTL)

1 for orbit phaseMPHASE =
2 for reentry phase

TT = anchor time of input vector

XX = X coordinate of input position vector

YY = Y coordinate of input position vector

Z Z = Z coordinate of input position vector

XXD = :_ component of input velocity vector

YYD = Y component of input velocity vector

ZZD = Z component of input velocity vector

TTL = final time of the period over which the integration is
to take place.

5.21.2 Output Requirements

The output from NUMIN is a table of position and velocity vectors, and an
indication as to whether the integration was successful. The vector table is set
up as follows:

TNINT
+1
+2
+3

= time increment of table (0 = minutes; 1 = seconds)
= integration output interval
= time of first vector in table
= time of last vector in table

5-107

MC 63-4

+5 = coordinates of first position vector
+6

+8 = components of first velocity vector
+9

etc., each subsequent position and velocity vector will now
follow.

The integration indicator is transferred through the call statement and is
set as follows:

IERROR = i for successful integration

2 for unsuccessful integration

5.21.3 Method

The numerical integration method used in this routine is described in the
NOCPNI program write-up. The NUMIN routine merely sets up the input data
and calls NOCPNI.

5-108

MC 63-4

SAVE INDEX REGISTERS

ORBIT

COMPUTE TIME INTERVAL
OF INTEGRATION IN

MINUTES

ADD3MINUTESTOINTER-
VAL AND STORE AS FOR-

WARDINTEGRATION
INTERVAL

PICKUP INPUT VECTORS
AND STORE IN NOCPNI

f
SET UP INTEGRATION RATE

MINUTES FOR ORBIT
SECONDS FOR REENTRY

TEST PHASE

REENTRY

COMPUTE TIME INTERVAL
OF INTEGRATION IN

SECONDS

ADD 24 SECONDS TO INTER-;
VAL, INCREASE TO NEXT

MULTIPLE OF 8, AND STORE
AS FORWARD INTEGRATION

INTERVAL

SET BACKWARDINTEGRA-
TIONINTERVAL TO3

MINUTES

l
SET INTEGRATION STEPS

TO 1 MINUTE

SET BACKWARDINTEGRA-
TION INTERVAL TO 24

SECONDS

I SET INTEGRATION STEPS JTO 8 SECONDS

I

FIGURE 5-20. NUMIN PROGRAM FLOW CHART (Sheet 1 o[2)

5-109

MC 63-4

NORMAL

RETURN

SET INDICATOR TO INTE-
._RATE FOR BOTH POSITION

AND VELOCITY VECTORS

I

SET INDICATOR TO GET
OUTPUT EVERY INTEGRA-

TION STEP

SET INDICATOR TO INCLUDEDRAG

NOCPNI ._

ERROR

RETURN

sE. 1IERROI = 1

IRESTORE INDEX REGISTERS I

SET

IERROR = 2

FIGURE 5-20. NUMIN PROGRAM FLOW CHART (Sheet 2 of 2)

5-110

' 63-4

5.22 IP 7094 REFERENCE FRAME CONVERSION PROGRAM (IPCNV)

This subroutine to the LAUNCH program converts IP 7094 position (r) and
velocity {_ components (X, Y, Z), or processed data, to true inertial coordi-

nates __, Y, _-). Input to IPCNV is placed into COMMON storage before entry.
The program is entered with the call statement CALL IPCNV.

The flow chart for IPCNV is shown in Figure 5-21.

The conversion is performed in the following manner.
formation matrix

+ _e t) -sin (v a + U_et) 0 /
+ _et) cos (v a + O_et) 0

0 1

cos (v a

M = _sin (Va0

then

If M is the trans-

(i) x (:r = = M • v = Y = M •

Z

Prior to its exit, IPCNV places its output into COMMON storage.

5-111

MC 63-4

SET

ANGLE = X/_A +_o • T

CO = COS (ANGLE)

SI = SiN (ANGLE)

COMPUTE POSITION

X= CO • XIP - SI • YIP

Y= SI • XIP+ CO • YIP

Z = ZIP

COMPUTE VELOCITY

X 1=C0 • XIP1 -SI "YIP1

YI= SI" XIPI+ CO .YIP1

Z1 = ZIP1

FIGURE 5-21. IPCNV PROGRAM FLOW CHART

5-112

MC 63-4

5.23 B-GE REFERENCE FRAME CONVERSION PROGRAM (GECNV)

GECNV is a subroutine of the LAUNCH program. It converts processed
data, position (_) and velocity (Y_ components from the B-GE reference frame

(_, _7, _) to true inertial coordinates (_X_,Y, Z_). Input to GECNV is placed in
COMMON storage before entry. The program is entered with the call state-
ment CALL GECNV.

The flow chart for GECNV is shown in Figure 5-22.

The conversion is performed in the following manner. If N is the trans-
formation matrix

N
cos (5_ + _e t) -sin (5_ + Wet) il= _sin (Sq_R + ¢_et) cos (5_ + Wet)

0 0

then

= = N •

= = N

Prior to its exit, GECNV places its output in COMMON storage.

5-113

MC 63-4

SET

ANGLE=A_br+rj -T

CO = COS (ANGLE)

Sl = SIN (ANGLE)

I
COMPUTE POSITION

X=CO • Xl - Sl "7/

Y=SI- Xl+CO -r/

Z=Z "_/

COMPUTE VELOCITY

X 1=C0 • Xll - SI .7/1

YI= SI • Xll+ CO -r/1

Z 1 = Z • 7/1

5-114

FIGURE 5-22. GECNV PROGRAM FLOW CHART

MC 63-4

5.24 TRUE INERTIAL COORDINATE CONVERSION PROGRAM (MERCNV)

MERCNV, a subroutine of LAUNCH, converts_position (_) and velocity (V)

components in the true inertial coordinate frame (X_, Y, Z_) to pad rectangular
coordinates (u, v, w). All input quantities are placed in COMMON storage
prior to entry with the call statement, CALL MERCNV.

The flow chart for MERCNV is shown in Figure 5-23.

The sequence of transformation for _ is

70 = sin (5_p + _e t)

(o 0

sin (SCpp + _e t)

c os (6 +p + Wet)

0

o __

:)(:)
= @ - r" 0

_:o r" 0

o)sin Lp

cos Lp

(10 0)• -sin L "
V = 0 cos Lp P

W 0 sin Lp cos Lp

(u)(sin ocOS Ooo)v = -cos {90 sin _} 0

w 0 0 i

V"

W"

IV

W

5-115

MC 63-4

The sequencefor _ is:

P -- -sin ($_} + cos ($@+p _et) p _ et)

_p 0 0

q

<sin:0cOS o0)/1o)¢v = CO 0 sin {}0 0 0 cos Lp" -sin Lp

{v 0 1 0 sin Lp" cos Lp _p

MERCNV places its output values into COMMON storage prior to its exit.

q

5-116 q

MC 63-4

,SET

ANGLE = A0p 4Yo T

C I = COS (ANGLE)

Sl = SIN (ANGLE)

C 2 = COS (Apad)

C3 = cos (0o)

S3 = SIN (_0)

C4 = COS (hp)

S4 = SIN CAp)

i
COMPUTE POSITION COMPONENTS

Xlp E= C1 • X+ S1 - Y

ETAPE=-S 1 • XyC 1 • Y

ZETAP E = Z

u'= ETAPE

v'= ZETAP E- Pl " $4

w'=Xip E-P1 "C4

_'=C 2 .v'- S2 W"

=S 2.v'+C2w"

u = S3 F + C 3 T

v=C3 5"+ S3 _"

w=_

i
COMPUTE VELOCITY COMPONENTS

lst= X1+Co - Y

2nd= Y1 -_° • X

XIPE=C1 • 1st+ S1 • 2nd

ETAPE= S1 • lst+C l ,2nd

ZTAPE = Zl

u'= ETAPE

v'= C2 'ZETAP E -S 2 • XIp E

w'= S2.ZETAPE+ 2 " XIPE

u I= S3.u'+ C3 "v"

vl =-C 3 .u'+ S3 .v"

w] _w r

FIGURE 5-23. MERCNV PROGRAM FLOW CHART

5-117

MC 63-4

5.25 ATMOSPHERIC DENSITY PROCESSOR PROGRAM (ATMOS)

This subroutine of LAUNCH and RENTER produces, in English units, the
atmospheric density, kinematic viscosity, and speed of sound at spacecraft
position. ATMOS prepares for aerodynamic parameter calculations the mach
number (ratio of relative speed to local speed of sound), Reynold's number per

foot (ratio of relative speed to local kinematic viscosity), and dynamic pressure

(Ve2/2).

The ATMOS flow chart is shown in Figure 5-24.

Input to ATOMS, including the coefficients of density polynomials set up by
INITIA, are in COMMON storage before entry. Control is transferred to
ATMOS with the call statement CALL ATMOS (KERR). The return indicator,
KERR, is part of the output from the program. The remaining output is placed
in COMMON before the program exits.

KERR = 1 when the height of the spacecraft exceeds 90 geopotential kilome-
ters, in which case the speed of sound ceases to be uniquely defined independent
of sonic frequency. Therefore, kinematic viscosity and the speed of sound
(actually, the mach number and Reynold's number) are meaningless and are set
to minus zero (-0). Alternatively, KERR = 2 if both kinematic viscosity and the
speed of sound are calculated.

The equations used by ATMOS are given below:

h = .3048 *h feet converted to meters

h __

ah
e

a +h
e

meters converted to geopotential meters

The seventh degree polynomials of atmospheric density are:

Ln (p) = _ a. i
i=O 1

h < 136025.0

= 2_ b. i
i=0 1

h =>136025.0

p= exp ILn (P)I
(kilograms/meters 3)

5-119

MC 63-4

T M = (TM) b + L M (h - hb) for proper base value, b.

C S = 20.046333 _ (meters/second)

1.458 x 10 -6 x TM 3/2

(TM + 110.4)
(meters 2/s ec ond)

converting y, C S and p to English units:

y (ft. 2/sec.) = y/. 9290304

C S (ft./sec.) = CS/. 3048

p (slug/ft. 3) = p/515. 378725

5-120

MC 63-4

J I_I=2 j-

I t=4 I_
I-I

I 1=6 l_I-

KERR = I

3.4164794
xp =

10 2

t

H Z = .3048 RADIUSEQ+

t
) I=0 f H Z : 0 <0 _ I= 1 i

H Z : 11000 _= 11000 _J I = 3 I

J >,1ooo ')l -I I

= 25000/_ H Z : 25000

H Z : 47000 _= 47000 _ I I-I ,=s I

= 53000/" H z : 53000

I= 8 I- IX, Hz : 9oooo

½ I > 90000

_ = 150000 _1 I150000> HZ : lS0000) | --I i = 9 I
> 150000

I= 10 J_ 60000(H z : 160000

I> 160000

HZ : 170000)=]70000 :I I=ll I) t

i '- :==" 1>17_
I= 12 j - i_ _ HZ= 200000 >

½ I > :2oo_

H z = 700000 .)

J>7ooo0o

I ,:,3 I

FIGURE 5-24. ATMOS PROGRAM FLOW CHART (Sheet 1 of 2)

5-121

1VIC 63-4

(

?
TN = TM(1) + XLM(1) 1(HZ- HB(1))

XLM(1) : 0)

1:°
"z-H_li1

IDENS:p(1)- jT-Xp.- TM(1) "!

Cs=m.o,_33,,/.__" >

,06 _eNS.(-rN+,,o._

CS = CS/.3048

xp. = xg/.09290304

I KERR = 2

1+
DENS = P "

_<90000f

_. HZ : 90000

> 90000 1

_j DENSDENS = 515.378725

)

FIGURE 5-24. ATMOS PROGRAM FLOW CHART (Sheet 2 of 2)

5-122

MC _'_ A

5.26 STAGNATION HEAT RATE PROCESSOR PROGRAM (HEAT)

HEAT calculates the stagnation heat rate, in English units, needed by
LAUNCH and RENTER. Inputs to HEAT are placed into COMMON storage be-
fore entry. Transfer of control to the program is effected by the call state-

ment, CALL HEAT. The program places its single output, qs (BTU/sec. ft.
into COMMON before its exit.

The flow chart for HEAT is shown in Figure 5-25.

If

The methodology involved in calculating this data is shown below:

P0 = sea level density (slugs/foot 3)

D_ = free stream speed (feet/second, relative)

h s = stagnation enthalpy (BTU/pound)

h w = wall enthalpy (BTU/pound f(t)(p))

hw540 = reference wall enthalpy (=130 BTU/pound)

= 2.58 (foot 1/2)

Then, in continuum flow (h =<350,000 feet)

-qs = _a T 4, where _= 0.8anda = 0.1713600x108 BTU/hour

2),

and in free molecular flow (h > 350,000 feet)

qs 2.69 107 77_-f'P_ _bL___C]_3= x
(BTU/feet 2 per second)

where p_ = free stream density (slugs/foot 3)

Dc = spacecraft speed 26, 000 (feet/second, inertial)

77=1.0

5-123

MC 63-4

From these equations, then, the following can be stated:

qs = 4.8'79 _ UD 3.15, h -< 350, 000 feet

qs =

where U D =

p =

qs =

6.439 x 105 PUD 3, h> 350,000 feet

free stream speed (kilofeet/second, earth-fixed)

free stream density (slug/foot 3)

stagnation heating rate (BTU/seconds per foot 2)

(

v E

1000

HE < 350,000 I
HE = 350,000) - QS=

HE > 350,000 "7

4.879- U3"15.

QS= 643900 • DENS. U3

FIGURE 5-25. HEAT PROGRAM FLOW CHART

5-124

MC 63-4

5.27 RANGE FROM LAUNCH PAD PROCESSOR PROGRAM (RFLP)

RFLP, a LAUNCH program subroutine, calculates S, the range from the
launch pad of the spacecraft. Inputs are placed in COMMON storage before the
program is called with the statement CALL RFLP. This program uses the
utility routine ARC COS in calculating S which is the only output of RFLP. S is
placed into COMMON prior to the exit of RFLP. The equation for range from
launch pad is as follows:

S = B • 2 where 2 is an average radius

and B = cos -1 (A). If [A [> 1, then S is set equal to zero and the program re-
turns control to Monitor. If]A] --<1, then S is calculated as follows:

S= cos -1 (sin L DsinL'pcOs L DcOs L'pCOS (X-X1)) • [_.Rp +2 RL')_/

before control returns to Monitor.

The RFLP flow chart is shown in Figure 5-26.

5-125

MC 63-4

COS TH = SIN _pp) • SIN (ApA D) + ODS(_bpp) • COS(APAD) COS()kpp- AMI)

TH = COS -II(cOSTH)

I

I>

>I

S

TH = 0

7
m

TH (RP + RL)

2.0

FIGURE 5.26. RFLP PROGRAM FLOW CHART

5-126

MC 63-4

5.28 LANGRANGIAN INTERPOLATION (GRUNGY)

The Langrangian interpolation program is used during the orbit and reentry
phases to interpolate for position and velocity vectors at any time in the trajec-
tory. The interpolation within this program is done by the U7INTP subroutine
used by the Goddard operational Mercury programs. A complete writeup of
U7INTP is given in subsection 1.3.15 so it will only be referenced here.

A flow chart of GRUNGY is given in Figure 5-27.

5.28.1 Input Requirements

The input parameters used by GRUNGY are transferred through the CALL
statement and supplied by an integration table produced by NUMIN.

CALL GRUNGY (TTN, XXN, YYN, ZZN, XXDN, YYDN, ZZDN,

IERROR)

TTN = Time of the desired vector in GMT seconds.

5.28.2 Output Requirements

The output from GRUNGY is a position and velocity vector which is trans-
ferred through the CALL statement

XXN = X coordinate of the output position vector

YYN = Y coordinate of the output position vector

ZZN = Z coordinate of the output position vector

XXDN = :_ component of the output velocity vector

YYDN = Y component of the output velocity vector

ZZDN = _ component of the output velocity vector

IERROR = 1 successful interpolation

2 unsuccessful interpolations

5.28.3 Method

The Langrangian interpolation method used in this routine is described in

subsection 1.3.15. The GRUNGY routine merely sets up the input data and
calls U7INTP.

5-127

MC 63-4

SAVE ALL
INDEX REGISTERS

I CONVERT INPUT TIME

TO MINUTES AND SECONDS

U71NTP) ERRORRETURN

NORMAL
RETURN

MOVE OUTPUT VECTOR
TO CALL LIST

STORE 2 IN
IERROR

STORE 1 IN IERROR

RESTORE INDEX
REGISTERS

FIGURE 5-27. GRUHGY PROGRAM FLOW CHART

5-128

lvlw 63-4

5.29 RECOVERY AREA CONVERSION ROUTINE (RCACNV)

RCACNV converts the recovery area numeric code to a recognizable alpha-

numeric code.

A flow chart of RCACNV is shown in Figure 5-28.

5.29.1 Input Requirements

The numeric value of the recovery area is in the calling sequence (JAREA).

5.29.2 Output Requirements

The alphanumeric value is replaced in the calling sequence (RECREA).

5.29.3 Method

The program acquires the numeric value of the recovery area from the call
sequence (JAREA) and places the number in Index Register 1. The program
then uses the Index Register to find the corresponding alphanumeric code. It
stores this code back in the calling sequence (RECREA) and returns to Monitor.

5.29.4 Usage: Call Statement

Call RCACNV (JAREA, RECREA).

JAREA is the numeric code for the recovery area. RECREA is the cor-

responding alphanumeric code for the recovery area. (See key to Quick Look

or Three-Day Report for conversions.)

5-129

MC 63-4

I SAVE INDICES. STORE

NUMBER TO BE CON-

VERTED FROM AC IN XRI

USE XRI TO DETERMINE
CONVERTER CODE

RESET INDICES AND STORE
CONVERTED CODE IN
CALLING SEQUENCE

FIGURE 5-28. RCACNV PROGRAM FLOW CHART

5-130

MC 63-4

5.30 DISTANCE COMPUTATION OF EARTH AND SPACE TRACK (DISTAN)

DISTAN computes the projected earth-surface distance and space-track

distance traveled by the spacecraft from liftoff to impact.

The flow chart for DISTAN is shown in Figure 5-29.

5.30.1 Input Requirements

The following parameters are transferred in the call statement:

a) Present position, _ and k.

b) Time associated with present position.

c) The height of the spacecraft above the oblate earth.

d) The phase indicator.

5.30.2

The

a)

b)

c)

Output Requirements

following data on A3 is the output from DISTAN:

The last anchor time of the arc length.

The arc lengths for the earth and space tracks.

The sums of the arc lengths for the earth and space tracks associated
with the anchor time.

5.30.3 Method

The following formulas are used to calculate the distance, D.

n

a) D i = _ A4 i where i-- 1or 2
t = 0 n = total time of flight

b) A4 i = R i + AX) (cos_PB)

5-131

MC 63-4

c) R 1 = A
cos 2

1

2
sin q_B

_oB +

d) R 2 = (A+H)

1 sin2
%

°s2 (PB + 2

1-$,_

where

D 2 =

A_=

A =

_A, XA =

CPB, XB =

%-%

AX = XB-}, A

D 1 = total distance traveled by the spacecraft projected on earth's
surface

total space track distance

arc length from time t - At to t

semimajor axis of oblate earth

eccentricity of elliptic earth

eccentricity of orbital ellipse

present position at time t - At

present position at time t

5.30.4 Usage: Call Statement

CALL DISTAN (IIFT, LXED, CLED, TIMNS,

IIFT= 0 first time through routine

0 not first time through

HAOE, NFASE)

5-132

MC oo-4

XLED = longitude of present position

CLED = geocentric latitude of present position

TIMNS =

HAOE =

NFASE =

time of present position in seconds

height above oblate earth

phase indicator

5-133

MC 63-4

SET FIRST
TIME THROUGH

INDICATOR ;_ ZERO

3443.923

eEART H = .00335239

eo R BI T .0080000

I

STORE PRESENT I

POSITION

(/,AND>,

1
INITIALIZE J

ALL TEMPORARY l
STORAGE LOCATIONS l

TO ZERO l

I
SET TIME 1 I= PRESENT TIME

EJECT PAGE [

E,_S_,MJ

I SET TIME 2 J=_ PRESENT TIME

J TIME N :TIME 2 - TIME I

TIME N : .95

_ .95
RESENT LONGI TUDE_

(_) : ZERO J

<ot

PREVIOUS _'_ _0 ISETXLBB= PRESENT(L_NGIz]URDoE _ LONGITUDE (_)+ 2_ I

_ <0

ISET XLBB = PRESENTLONGITUDE (_) I

SET CLBB _ PRESENT l
LATITUDE (_b)

I
COMPUTE CENTRAL JANGLE AND RADII

l
COMPUTE jARC LENGTHS

I
TEST PRESENTPHASE

LAUNCH I

ABORT

REENTRY

1

.t_ 'N_;.%°_¢o_'°N

_" PRESENT ARC

TESTPREV,OUS_ LENGTH- PREV,OUS
PHASE J _. ARC LENGTH / I

/ LAUNCH _. : 100 N.MI. _ J

I ABORT ,I, /

REENTRY I l

t
r

SET PREVIOUS _ AND

J XE_ TOPRESENTI

FIGURE 5.29. DISTAN PROGRAM FLOW CHART (Sheet 1 of 2)

5-134

MC 63-4

(PREV. + PRES.) E ARC LENGTH

DE= 2

(PREV. + PRES.) s ARC LENGTH

DS= 2

= + D ESD E SD E

= + DS
SD S SDS

WRITE OUTPUT

TAPE AND TURN

INTERPOLATION

INpI(__0FF

= + ARC LGH ESD E SD E

= + ARC LGH SSO S SOS

|

SET PREVIOUS ARC J

lLENGTH = PRESENT

ARC LENGTH

1
I SET PREVIOUS q_]

ANDS.= PRESENTq_
AND _.. SET

TIME 1 = TIME 2

OUTPUT

TAPE

FIGURE 5-29. DISTAN PROGRAM FLOW CHART (Sheet 2 of 2)

5-135

MC 63-4

5.31 UTILITY PROGRAMS

The Postflight Reporter program has eight subroutines which are of a
utility nature. These programs are used so frequently in Monitor and other
Postflight Reporter programs that they merit separate definition.

The flow charts for the utility programs are shown in Figure 5-30.

5.31.1 TIME CONVERSION PROGRAM (HRSCNV)

HRSCNV converts floating-point time (seconds) into fixed-point hours,
minutes and seconds when used in the various subprograms. The input param-

eter TIME and output parameters NHOUR, MIN, and NSEC are contained in
the call statement CALL HRSCNV (TIME, NHOUR, MIN, NSEC). The output
(integral hours, minutes and seconds) is placed in the parameter list of the call
statement.

5.31.2 ANGLE DEGREE LIMITS DETERMINATION PROGRAM (FIXIT)

This program ensures that an angle lies between zero and 360 degrees
(including zero degrees). The angle is specified in degrees in the call state-
ment CALL FIXIT (A). If the angle does not lie between zero and 360 degrees,
FIXIT modifies it by 360 degree increments until it is between the two limits.
The modified angle then replaces (A), the parameter in the call statement.

5.31.3 ANGLE RADIAN LIMITS DETERMINATION PROGRAM (FIXIT1)

FIXIT1 ensures that an angle lies between zero and two pi (2 _ radians
(including zero radians). The angle is specified in radians in the call state-
ment CALL FIXIT1 (A). If the angle does not lie between zero and two pi
radians, FIXIT1 modifies it by two pi radian increments until it is between the
two limits. The modified angle then replaces (A), the parameter in the call
statement.

5.31.4 HOUR LIMITS DETERMINATION PROGRAM (FIXIT2)

FIXIT2 ensures that N hours lie between the limits of zero and 24 (including
zero). The number of hours, N, is specified in the call statement CALL

FIXIT2 (N). If N does not lie between zero and 24, FIXIT2 modifies it by 24-hour
increments until it is between the two limits. The modified N then replaces (N),
the parameter in the call statement.

5-137

MC 63-4

5.31.5 TANGENT COMPUTATION PROGRAM (TAN)

TAN derives a function whose value is the trigonometric tangent of the

parameter ANGLE. First, the angle specified in the call statement Y = TAN
(ANGLE) is determined to be between zero and two pi radians (FIXIT1 ensures
this). Then, TAN calculates the tangent of the corresponding first quadrant
(acute) angle. The sign is determined by quadrant considerations. For infinite
values, the largest possible algebraic value is set equal to the function.

5.31.6 ARC-SINE COMPUTATION PROGRAM (ARCSIN)

ARCSIN produces the radian angle between -Ir/2 and +y/2 whose sine cor-
responds to the value given in the call statement ANGLE = ARCSIN (VALUE).
However, if VALUE is numerically less than + 1.0, the program uses the

FORTRAN routine ATAN. If the argument exceeds + 1.0 numerically + _ is
returned.

5.31.7 ARC-COSINE COMPUTATION PROGRAM (ARCCOS)

ARCCOS produces the radian angle between zero and y radians whose

cosine corresponds to the value given in the call statement ANGLE = ARCCOS
(VALUE). If VALUE is between minus and plus one (-1, +1), a transformation
using ARCSIN is accomplished. If VALUE is greater than one (> 1), zero is
returned. If VALUE is less than or equal to minus one (< -1), y is returned.

5.31.8 SYSTEM TAPE WRITER (AUTHOR)

AUTHOR writes a loader on tape A1 followed by the Postflight Reporter
program. The loader is written to load the Postflight Reporter program and
transfer to it when the LOAD TAPE button on the console is pressed.

5-138

•,_C63=4

t
I TNHOUR = NHOUR J

I I
t

TMIN = 60 • TMIN]

l
J NSEC =H-TNHOUR- TMIN

-_ A:0

>o

,_ A : 360

t> 360

UR_ A = A - 360I I

=0 _ A:0

<2rr

A:2tr

=2#

J A=0

=0 _ N:0

24>J

l =
I N=0

A = A + 360]._[

A= A+2rr

>2rr

_ A=O

N=N+24

N= N -24

FIGURE 5-30. UTILITY PROGRAMSFLOW CHARTS (HRSCNV, FIXIT,
FIXIT 1, FIXIT 2, TAN, ARCSIN, ARCCOS, AUTHOR (Sheet] 0[4)

5-139

MC 63-4

ALF

SET ALF
= ABSOLUTE

VALUE

= 3 n/2

I
!

FIXIT 1(ALF)

Jr= (ALF : 0

j to
= n'/2 _ ALF : n'/2

TAN = 37777777777 .

(+X) " (_-ALF) J _ 1

ALF : n"

: 3rr/2

SET X = 1.0 I

}
)

)

SFT_ I _>3o'2
X =-1.0 J ALF = 2n -ALF

J J SET X_, - 1.0

I SIN(ALF)

TAN : C-'-OS(ALF'_)

TAN = TAN • (+X) •(+ALF)

< n/2

ALF = n'-ALF JSET X=-l.0

ALF = ALF -n"

SET X = -1.0

I

FIGURE 5-30. UTILITY PROGRAMS FLOW CHARTS (HRSCNV, FIXIT,

FIXIT 1, FIXIT 2, TAN, ARCSIN, ARCCOS, AUTHOR) (Sheet 2 of 4)

5-140

r 63-4
_vJk _.J

Y=J I×]J]

IARcs,,_= [ARCTAN

<I

J IW'- _,'/J

ARCS,,,,_(+×IJ ARCCOS = 0

C

ARCCOS = y_

x+ 1 : 0

x: 0)

1
J ARCCOS = y + _" J

ARCCOS =

FIGURE 5-30. UTILITY PROGRAMS FLOW CHARTS (HRSCNV, FIXIT,
FIXlT I, FIXlT 2, TAN, ARCSIN ARCCOS, AUTHOR (Sheet 3 o[4)

5-141

MC 63-4

(

REWIND

A1 TAPE

1
SAVE INDEX

REGISTERS

1
SAVE CONTENTS

OF LOCATIONS

0, i, 2, AND 3

TEST SENSE

SWITCH 4 DOWN

RESTORE

CONTENTS OF

LOCATIONS

0, 1, 2, AND 3

RESTORE INDEX

REGISTERS

REWIND AI

FIGURE 5.30. UTILITY PROGRAMS FLOW CHARTS (HRSCNV, FIXIT,

FIXIT1, FIXlT2, TAN, ARCSIN, ARCCOS, AUTHOR)(Sheet 4 of 4)

5-142

MC 63-4

5.32 PROGRAM OPERATING PROCEDURES

The following section lists the procedures necessary to operate the Post-
flight Reporter program. The procedures are broken up into three major areas:
(1) loading the program, (2) operating procedures, and (3) setting up the data
deck.

5.32.1 Loading the Program

There is a choice of two methods of loading the Postflight Reporter pro-
gram into the computer. The first method utilizes the 32K 7094 Fortran system.
The second uses a self-loading Postflight Reporter system tape. The use of the
Fortran system is the slower of the two methods. However, it offers certain
advantages--it makes possible the generation of additional self-loading system
tapes and it permits modifications to be made in the program.

Use of the self-loading Postflight Reporter system tape is the faster of the
two methods, but it does not allow for program modification or generation of
additional self-loading system tapes. Because of its advantage in speed, this
is the generally preferred method since modification or generation of additional

tapes is not normally needed during an operational run. The self-loading sys-
tems tape is generated by subroutine AUTHOR (see subsection 4.35.8).

5.32.2 Loading With the 32K 7094 Fortran System (Alternate No. 1)

This method is used to permit program modification and generation of ad-
ditional self-loading system tapes.

a) Tape setup.

b) Mount the following tapes:

A1--32K 7094 Fortran system tape

A2--Postflight Reporter program deck on tape

A3--Blank (used by Fortran and Postflight to output computed distances)

A4--Blank (used by Postflight for storage of high-speed output data)

A5--Blank (standby to A4)

B1--Blank (used by Postflight as miscellaneous data tape; accepts bad
data from the log tape(s) and data rejected from the programs)

B2--Blank (used as Condensed Postflight Report output tape)

B3--Blank (used by Fortran and Postflight as an output plot tape)

5-143

MC 63-4

B4--Blank (used by Postflight for storage of high-speed input messages;
first file for high-speed input data; secondfile for a record of the
seven discrete events for GETME)

B6--Mercury Programming System log tape

B7--Standbyto B6

C3--Blank (used as output tape for the Postflight Report)

c) Place a 32K Fortran start card in the card reader.

d) Clear the computer and press LOAD CARD(S).

After the program has beenloaded, it will print the following message and
halt with a 525258in the address of the instruction register: IF A SYSTEM
TAPE IS TO BE GENERATED- MOUNTA BLANK A1, DEPRESSSENSE
SWITCH4 AND START. IF NOT, MERELY PRESSSTART.

These instructions should then be followed and a self-loading Postflight
Reporter system tape, either generated or not. This completes the loading
phaseusing the Fortran system.

5.32.3 LoadingWith the Self-loading Postflight Reporter Program System
Tape (Alternate No. 2)

This method is used when program modifications are not neededor additional
system tapes are not to be generated.

a) TapeSetup.

b) Mountthe following tapes:

A1--Self-loading Postflight Reporter program system tape

A3--Blank (used by

A4--Blank (used by

A5--Blank (standby

Postflight to output computed distances)

Postflight for storage of high-speed output data)

to A4)
B1--Blank (used by Postflight as miscellaneous data tape; accepts bad

data from log tape, and data rejected from the programs)

B2--Blank (used as CondensedPostflight Report output tape)

B3--Blank (used as output plot tape)

B4--Blank (used by Postflight as high-speed input message tape; first
file for high-speed input data; second file for record of the seven
discrete events for GETME)

5-144

MC 63-4

B6--Mercury Programming System Log Tape

B7--Standby to B6

C3--Blank (used as output tape for the Postflight Report)

c) Clear the computer and press LOAD TAPE.

The program will load itself into the computer and halt, completing the
loading phase.

D 5-145

.LVJ.C _ AO0 _ "-Jl:

5.33 OPERATING PROCEDURES

This section lists the procedures necessary for actual operation of the
Post-flight Reporter program once it has been loaded into the computer.

Upon completion of the loading of the program, the computer prints the

following operating instructions and halts with 777718 in the address of the in-

struction register: IF SORT IS NECESSARY - ENTER THE NUMBER OF PHYS-
ICAL LOG TAPES IN THE ADDRESS OF THE KEYS AND PRESS START. IF

SORT IS TO BE SKIPPED - DEPRESS SENSE SWITCH 6, MOUNT A4 AND B4,
AND PRESS START. SENSE SWITCH 1 MAY BE TOGGLED FOR ON-LINE
GLIMPSES OF C3 OUTPUT. DEPRESS SENSE SWITCH 3 TO SUPPRESS CON-
DENSED REPORT ON B2. DEPRESS SENSE SWITCH 2 TO SUPPRESS DIS-
TANCE COMPUTATION.

The settings of all switches and keys, and the insertion of the data deck are
performed at this time. The operation is as follows:

a) Entry Keys

The number of physical log tapes is right-justified in the address
portion of the entry keys.

b) On-line Card Reader

Data deck in and ready (see subsection 5.36.3 for setup of this
deck).

c) Sense Switch Settings

SS1 Up--suppress on-line copy of C3

Down--print copy of C3 on-line

SS2 Up--compute and write distances on A3

Down--suppress computation of distances

SS3 Up--write Condensed Report on B2

Down--suppress writing of Condensed Report on B2

SS6 Up--execute SORTER (use Mercury Programming System Log
Tapes as input to prepare A4 and B4 data tapes)

Down--suppress SORTER (use prepared A4 and B4 data tapes
from a previous run)

5-147

MC 63-4

After all settings have been made, the start button is pressed and operation
begins. During operation of the programs, certain error conditions may be
determined. When this occurs, the program prints a message giving the condi-
tion existing and halts, awaiting action by the operator.

d) Program Stops

The program stops and the associated messages are as follows:

HPR 77773_--error stop from GETME, on-line printout, AN
ERROR HAS BEEN DETECTED IN KEY OR TAPE
SET-UP. PLEASE REVIEW OPERATING NOTES
AFTER COMPLETING CORRECTION PRESS START.

HPR 777758--error stop from SORTER, same on-line printout as
for 777738 .

HPR 777778--end of job has been reached. EOF has been written
on C3, A3, B3, and B2. Print C3, A3, and B2 under
program control at six lines per inch. To run addi-
tional cases, mount new input tape and blanks on B2
and C3. Press start.

HPR 121218merror stop for request-for-request card, on-line
printout, ERROR IN DECK SET-UP. TF EXCEEDS
TL. REPUNCH, PRESS START.

5-148

MC 63-4

5.34 SETUP OF DATA DECK

This subsection describes the preparation and setup of the data deck. Six
types of cards are in the deck, the format of which is listed below.

C ard

Type

1

2

3

4

Card

Columns

1-72

(inclusive)

1-11

12-22

23-27

1

Digital Formats

72 Alphanumeric
Characters

XXX.

XXX. XXXXXXX

XXXXX

X

XX

XX

XX.X

XX

XX

XX.X

XXX. X

2-3

4-5

6-9

10-11

12-13

14-17

18-22

23

2-8

9-15

X

X

XXXXX. X

XXXXX. X

Data

Headings printed at beginning of the
output

Greenwich hour angle at midnight
GMT preceding launch (XNUA)
degrees

Launch azimuth (THETAO) degrees

Computer name (A or B)

1 = Three-Day Report;
2 = Quick Look

Integral hours/minutes/seconds =

TF = first time since phase

initiation

Integral hours/minutes/seconds =

TL = last elapsed time since phase

initiation

Time interval (At) between report
output records, seconds

Phase indicator 1 = Launch,
2 = Abort, 3 = Orbit,
4 = Reentry

0 = last vector in phase

1 = not last vector in phase

Anchor time of vector in GMT
seconds

Last time for which vector is valid
in GMT seconds

5-149

MC 63-4

Setup of Data Deck (Continued)

Card

Type

5

Card

Columns

16-22

1-12

13-24

25-36

37-48

49-60

61-72

Digital Formats

XXXXX.

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

xXXXXXXXXXXX

X

Data

Time since anchor time (L_t} in
seconds at which to start

using vector.

I

X component of inertial position
vector in floating-point octal

I

Y component of inertial position
vector in floating-point octal

component of inertial position
vector in floating-point octal

X component of inertial velocity
vector in floating-point octal

..2-"

Y component of inertial velocity
vector in floating-point octal

.A."

Z component of inertial velocity
vector in floating-point octal

Sign-off. Zero punch in Column 1
to indicate end of run

The data deck is setup in the following manner. The first two cards of the
deck are always of types 1 and 2 in that order (see Figure 5-31. Type 1 is a
heading card which is printed with the output. Type 2 is a physical parameter
card describing the launch day. These cards are then followed by a series of
card groups containing one or more cards for each flight phase desired in the

output.

The launch and abort phases each have one card--a phase card of type 3.
The orbit and reentry phases each have a phase card of type 3 followed by a

pair of time, position and velocity cards (types 4 and 5} for each input vector.
The last card of the data deck is of type 6 which signals the end of the run.

5-150

DO--'-J:

LAST CARD
TYPE6

TYPE5

TYPE 4

REENTRY GROUP TYPE5

TYPE4

TYPE 3

TYPE5

TYPE4

TYPE5

ORBIT GROUP TYPE 4

VECTOR CARD
TYPE 5

TIME CARD
TYPE4

TYPE 3 (ORBIT)

(ABORT)
ABORT GROUP TYPE 3

GROUP/ PHASE CARD (LAUNCH) J

LAUNCH J TYPE3 J

_PHYSICAL PARAMETER CARD J

(REENTRY)

FIGURE 5-31. DATA DECK SETUP

5-151

Appendix A

INDEX TO PROGRAMS

Program Manual Sec.

A3MSCP MC63 3 2

ACTORS MC63 4 5

AJACQ MC63 2 6

ARCCOS MC63 4 5

ARCSIN MC63 4 5

AOSTAD MC63 3 3

ATMOS MC63 4 5

AUTHOR MC63 4 5

B2SWIP MC63 3 2

BCD MC63 3 4

BCLS2 MC63 4 2

BCTB MC63 4 5

BINNO MC63 2 7

BOSCER MC63 3 2

BYERR MC63 3 2

C9ASKE MC63 4 1

C9DTRF MC63 3 2

C9DTRF MC63 3 3

C9RVTH MC63 4 1

CALTOI MC63 3 2_

CAMPSO MC63 3 2

CANORM MC63 3 2

Title

Compute Latitude and Longitude Program

Constant Factors Initialization Program

Acquisition Data Macro

Arc-Cosine Computation Program

Arc-Sine Computation Program

Acquisition Data Generation Program

Atmospheric Density Processor Program

System Tape Writer

Sliding Wire Impact Predictor Program

Binary Coded Decimal Conversion Program

Closed Loop Simulation Program, Bda to Goddaxd

BCD Word Conversion Program A (BCTB1)

Binary Number Card Image Macro

Earth Radius Determination Program

Launch CHNOND Error Return Processing
Section

Solution of Kepler's Equation Subroutine

Retrofire Time Correction Program

Retrofire Time Correction Program

Computation of Elliptic Motion During Launch
Subrtn

Short Arc Subrtn to Convt Loc RAE to Inert XYZ

Short Arc Subrtn to Approx Mid-Point Solution

Short Arc Subrtn to Form Norm Equation Sums

A-1

Program

CASARC

CASOLN

CC7091

CCABRT

CCGEB1

CCHOLD

CCHOMI

CCLOK

CCMAIN

CCMEAB

CCMISS

CCMLR

CCMLS

CCMLT

CCMLV

CCMLX

CCRTYL

CCSTIP

CFDTR

CHNOND

CHUMLY

CKEN

CKIC

CKNOC

CKNOD

CKYS

Manual

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 4

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

INDEX TO PROGRAMS (Continued)

Sec.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Title

Goddard Short Arc Orbit Determination Program

Short Arc Subroutine to Solve Normal Equations

IP 7094 Coordinate Transformation Program

High Abort Program

B-GE Data Conversion Program

Hold Phase Main Calculation Program

Missing Data During Hold Phase Routine

Launch Prog to Insure Retrofire Occurs in Bda
Comm. Capability

Launch Phase Main Calculation Program

Medium Abort Program

Missing Data During Normal Launch Routine

Launch GMTRC Computation Routine

Launch Init and Sel Source Data Coll Sect

Launch Pre-Tower Separation Logic

Launch Logic Providing Vectors to Make Go-
No-Go Decision

Launch Average Vector Data Switching Routine

Low Abort Program (CCRTMI)

Strip Chart Processor Programs (CCSTGE)

Launch Phase Output Adjustment Program

Computation of Circular Orbit Program

BCD Output Initialization Program

Launch Phase Time Conversion Subroutine

Launch Phase Inclination Angle Computation
Routine

Launch Phase Impact Prediction Routine 5

Launch Phase Impact Predictions Logic for
Velocities of 10K FPS when Perigee is < 430K Ft

Launch Ph IP Logic for Velocities > 10K FPS

when Perigee > 430K Ft

A-2

Program

CLS3

CMLJ

COL8ER

COMPAR

CORING

CORMAP

CR3R4

CR3R6

CR5HE

CR5R6

CSTLU

DIPCDC

D2CSFE

D2SLNE

D2SSMT

D2SUNE

D2WEQT

D3CDRM

D3PTWT

D4 C FRY

DGHR

DISTAN

DONIN

DONOUT

DODIFC

EOBDIT

EOLEDI

FIXIT

Manual

MC63 4

MC63 3

MC63 4

MC63 4

MC63 4

MC63 4

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63

MC63

MC63

MC63

MC63

MC63

MC 63

INDEX TO PROGRAMS (Continued)

4

4

4

3

3

3

4

Sec.

2

2

3

3

4

3

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

Title

Closed Loop Simulation Program MCC

Launch Go-No-Go Decision Logic

Symbolic Tape Updating Program

Squoze Deck Comparison Program

Prog to Init Taking Snap Dumps of the Mer Sys

Core Mapping Program

Launch Phase Impact Prediction Routine 3

Launch Phase Impact Prediction Routine 2

Launch Phase Impact Prediction Routine 4

Launch Phase Impact Prediction Routine 1

Launch Ph Impact Pred Logic for Vect < 10K FPS

Partial Coefficient Calculation Program

Calculate Standard Error Fit Program

Solve Normal Equations Program

Station Sum of Squares Over M Program

Set Up Normal Equations Program

Weighting the Equations of Condition Program

Choose Desired Radar Message Program

Weight Table Lookup Program

Calculate Functions of R and V Program

Time Measure to BCD Degrees Conversion
Program

Distance Computation of Earth and Space Track

High-Speed Input Processor Program

High-Speed Output Processor Program

Differential Correction Control Program

Bermuda High-Speed Edit Program

Editing Program

Angle Degree Limits Determination Program

A-3

Program

FIXIT 1

FIXIT2

GCNVE

GEB

GECNV

GETME

GRUNGY

HBSUB

HCSUB

HEAT

HMSTS

HOMER

HRSCNV

HSIN7

HSOP1

IBWR1

IBWR2

INITIA

IPCNV

IPORR

IOHSBD

IOHSGB

10HS09

IOMANI

10TTIN

ISODMP

KEYC F

KEYDC

KEYDE

Manual

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 4

MC63 3

MC63 3

MC63 3

MC63 3

MC63 3

MC63 4

MC63 2

MC63 2

MC63 2

INDEX TO PROGRAMS (Continued)

Sec.

5

5

5

5

5

5

5

2

2

5

5

4

5

3

5

1

1

5

5

5

1

1

1

1

1

4

2

2

2

Title

Angle Radian Limits Determination Program

Hour Limits Determination Program

Units Conversion Program

Subchannel 1 Processing Program

B-GE Reference Frame Conversion Program

Discrete Event Processor Program

Langrangian Interpolation

HB Subroutine

HC Subroutine

Stagnation Heat Rate Processor Program

Time Word Conversion Program (B)

Program to Write Dumping Portion of B4 Tape

Time Conversion Program

Log Tape High-Speed Input Program

High-Speed Output Tape Writer Program

Share System Tape Writer Program

Share System Tape Editor Program

System Parameter Initialization Program

IP 7094 Reference Frame Conversion Program

IP 7094 High-Speed Input Processor Program

Bermuda High-Speed Input Program

B-GE High-Speed Input Program

IP-7094 High-Speed Input Program

Manual Insertion Program

Low-Speed Teletype Input Program

Isolated Dumping Portion of B4 Tape

Mon Subrtn to Ind CADFISS Use of Radar Stations

Mon Subrtn to C TL for Insertions and Deletions in

TMSTMS Tbl

Mon Subrtn to Bypass Diff Corr for a Station

A-4

Program

KEYRT

KEYS

KEYTL

LAUNCH

LBRWR

LOWC OR

MANIN

MBCD

MERCNV

MERGE

MFABRT

MFCCGB

MFCCGE

MFCCIP

MFCPNI

MFDIFC

MFEOBD

MFHSBD

MFHSGB

MFHS08

MFHS09

MFLABT

MFLANA

MFLED1

MFLHLD

MFLNML

MFLPBD

MFLRT1

MFLRT2

Manual

MC63 2

MC63 4

MC63 2

MC63 4

MC63 4

MC63 4

MC63 4

MC63 3

MC63 4

MC63 4

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

INDEX TO PROGRAMS (Continued)

See °

2

3

2

5

1

3

5

4

5

2

3

3

3

3

5

5

3

2

2

2

2

3

6

5

3

3

6

3

3

Title

Monitor Subroutine to Accept GMT of Retrofire

Tape Key Comparison Program

Monitor Subroutine to Insert or Delete Telemetry

Launch Phase Processor Program

SOS Library Tape Writer Program

Low Core Reference Program

Manual Insertion Processor Program

BCD to Modified BCD Conversion Program

True Inertial Coordinate Conversion Program

Merge Program

Monitor Suffix to CCABRT

Monitor

Monitor

Monitor

Monitor

M onit or

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Suffix to CCGEB1

Bad Data Suffix to CCGEB1

Suffix to CC7091

Suffix to NOCPNI

Prefix to DODIFC

Suffix to Bermuda Edit Processor EOBDIT

Suffix to IOHSBD

Radar Data Suffix to IOHSGB

Telemetry Suffix to IOHS09

Radar Data Suffix to IOHS09

Abort Suffix to MFLHLD

Suffix to OOLANA

Suffix to EOLED1

Suffix to CCHOLD and CCHOMU

Suffix to CCMAIN and CCMISS

Suffix to OOLPBD

Suffix to CCRTYL and CCRTMI

Suffix to CCMEAB

A-5

Program

MFMANI

MFMAN2

MFMAN3

MFMAN4

MFMAN5

MFMAN6

MFMAN7

MFMAN8

MFMAN9

MFMANI

MFMANR

MFMAOS

MFML6A

MFORMC

MFORRE

MFRARF

MFSARC

MFSTRP

MFTTIN

MLEXBD

MLSWCH

MLUPDT

MMAQA

MPABRT

MPCCGB

MPCCIP

MPCPNI

MPDIFC

Manual

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 3

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

INDEX TO PROGRAMS (Continued)

Sea.

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

2 Monitor

5 Monitor

6 Monitor

5 Monitor

3 Monitor

3 Monitor

2 Monitor

3 Monitor
r out in e

3 Monitor

3

2

3

3 Monitor

3 Monitor

5 Monitor

5 M onitor

Title

Time of Liftoff Suffix to IOMANI

Normal Retrofire Suffix to IOMANI

Long and Pass No. Suffix to IOMANI

Delta T and Reentry Time Suf to IOMANI

R and V Suffix to IOMANI

Capsule Clock Setting to IOMANI

Non Nominal Retrofire Suffix to IOMANI

Orbit Constants to IOMANI

DC Intvl and Arc Lgth Suffix to IOMANI

Suffix to IOMANI

General IOMANI Suffix Exit

Abort/Orbit Switch Suffix to IOMANI

Telemetry Suffix to IOHSGB

Suffix to O5ORMC

Suffix to OOORRE

Suffix to R5RARF

Suffix to Short Are Program

Suffix to the Strip Chart Processor

Suffix to IOTTIN

Launch Bermuda Vector Extrap Sub-

Launch Table Switching Subroutine

Monitor Launch Output Updating Subroutine

Launch Phase Data Acquisition Program

Monitor Prefix to CCABRT

Prefix to CCGEB2

Prefix to CC7091

Prefix to NOCPNI

Prefix to DODIFC

A-6

Program

MPDIFK

MPDIFM

MPEOBD

MPEOBD

MPHSBD

MPHSGB

MPHS09

MPLANA

MPLCCM

MPLED1

MPLED2

MPLPBD

MPORMC

MPORRE

MPRARF

MPSARC

MPSTRP

MPTTIN

MODIAG

MOENDS

MOINIT

MOPANL

MOPRIO

MOQUEU

MORTCC

MORTRN

MOSAVE

MOUNQU

Manual

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

INDEX TO PROGRAMS (Continued)

Sec o

5

5

3

3

2

2

2

6

3

5

5

6

5

6

5

3

3

2

1

1

4

1

1

1

1

1

1

1

Monitor Prefix

Monitor Prefix

Monitor Prefix
E 0 BDIT

Monitor Prefix
EOBDIT

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Monitor Prefix

Title

to DODIFC

to DODIFC

to Bermuda Edit Processor

to Bermuda Edit Processor

to IOHSBD

to IOHSGB

to IOHS09

to OOLANA

to Main Launch Computations

to EOLED1

to EOLED1

to OOLPBD

to O5ORMC

to OOORRE

to R5RARF

to Short Are Program CASARC

to the Strip Chart Processor

Monitor Prefix to IOTTIN

Main Controller Diagnostic Program

Main Ending Program

Main Controller Initialization Program

Non Real Time Save Program

Main Controller Priority Program

Main Controller Queue Program

Real Time Channel Main Controller Program

Main Controller Return Program

Main Controller Save Program

Main Controller Unqueu Program

A-7

Program

MSDELT

MSDEOV

MSIINT

MSINSR

MSLCUC

MSLOGG

MSMOVE

MSPASN

MSRECC

MSTIA C

MSTICK

MSVTCA

MSWE CC

MSWTMS

MTCPCC

MTDDCP

MTENLG

MTENPR

MTENST

MTERTC

MTHFSC

MTHSB5

MTHSB6

MTHSGB

MTHSOD

Manual

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

INDEX TO PROGRAMS (Continued)

Sec.

5

2

5

2

4

2

2

5

4

5

2

2

6

Title

Mon Subrtn to Delete Entries in TMSTMS Table

Monitor Overlay Sort Subroutine

Subrtn to Remove Obs from Differential Correc-
tion

Subrtn to Insert Radar Obs into Diff Correction

Mon Subrtn to Move Radar Msg Blk to 32K Buffer

Monitor Logging Subroutine

Monitor Subroutine for Moving Data Between
Cores

Monitor Pass Number Subroutine

Error Correction Code Reader Subroutine

Monitor Teletype Input Acceptability Subroutine

Monitor Teletype Input Check Subroutine

Generation of TMVTCA Table

Error Correction Code Writer Subroutine

Mon Subrtn to Comp a TMDATA Block Address

Monitor Prog Ctl Console Channel Trap Proces-
sor

Monitor Trap Processor for OOLPBD

Monitor End-of-Logging Trap Processor

Monitor End-of-Printing Trap Processor

Monitor Station Characteristics Tape Processor

Monitor Real Time Channel Error Trap Proces-
sor

Monitor Half Second Trap Processor

Monitor Bermuda HS Input Trap Proc for
SC5

Monitor Bermuda HS Input Trap Proc for
SC6

Monitor B-GE High Speed Input Trap Processor

Mon Trap Proc for HS Output To CC

A-8

Program Manual

MTHSOP MC63 2

MTHS09 MC63 2

MTINTV MC63 2

MTMSCK MC63 2

MTQTSX MC63 2

MTRRRS MC63 2

MTRSTC MC63 2

MTRSYS MC63 2

MTSENS MC63 2

MTTEST MC63 4

MTTTIN MC63 2

MTTTOX MC63 2

MTWRRS MC63 2

MTWWVI MC63 2

MTWWWV MC63 2

MXCHER MC63 4

MXCORE MC63 4

MXDEFN MC63 4

MXHSPL MC63 4

MXHSPR MC63 4

MXILCO MC63 4

MXLOAD MC63 4

MXMRGE MC63 4

MXNDKT MC63 4

MXPOCL MC63 4

MXPRLG MC63 4

INDEX TO PROGRAMS (Continued)

Sec.

6

2

4

7

1

4

4

4

6

4

2

6

4

3

4

3

3

3

4

4

3

3

3

Title

Mon Trap Proc for HS Output to Goddard

Monitor IP 7094 High Speed Input Trap Processor

Monitor Interval Timer Trap Processor

Monitor Message Check Trap Processor

Simulated Trap Processor

Monitor Reentry Restart Tape Trap Processor

Monitor Orbit Restart Tape Trap Proces
{MTRSTB)

Monitor System Tape Processor

Monitor Sense Output Trap Processor

Real Time Transfer Trapping Test Program

Monitor Teletype Trap Processor

Monitor Teletype Output Trap Processors

(MTTTOY)

Monitor Restart Tape Writer Trap Proces

(MTWRS1)

Monitor Initial WWV Trap Processor

Monitor WWV Trap Processor

Program Providing Selection DCC Subchnl IO Data
from Mercury Log Tape

Symbolic Core Dump Program

Extended Definition of Symbols Processor

Log Tape Plotting Program

Log Tape High-Speed Output Program

Program to Print Real Time Core'd Output

Mercury System Tape Loader

Monitor Merge Program

Priority Indicator Listing Program

Program to Print Mercury Log Tape in Octal

Log Tape Printer Program

A-9

Program

MXSTWl

MXTH LG

MXWMOT

MYACQD

MYBUFR

MYDCIT

MYDDCP

MYGEN1

MYGEN2

MYGEN3

MYHSOD

MYHSOP

MYINIT

MYKEYS

MYLSYS

MYMESS

MYMINS

MYMSCK

MYQNEA

MYQPRA

MYQSYS

MYREST

MYRRRS

MYRSYS

MYOPCC

MYSCRD

MYSEEK

MYSENS

MYSRST

Manual

MC63 4

MC63 4

MC63 4

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

MC63 2

INDEX TO PROGRAMS (Continued)

Sec.

4

3

4

6

7

4

6

5

5

5

6

6

4

2

4

7

2

7

5

5

4

4

4

4

2

4

3

6

4

Title

Mercury System Tape Writer Program

Low-Speed Output Printer Program

Message Tape Writer Program

Monitor Acquisition Data Processor

Monitor Buffering Processor

Mon Edit Processor for Orbit to Reentry Interface

Monitor Output Processor for OOLPBD

Monitor Numerical Integration Generator

Monitor Numerical Integration Generator

Monitor Numerical Integration Generator

Mon HS Output to Cape Canaveral Processor

Mon HS Output to Goddard Processor

Monitor Initialization Processor

Monitor Processor to Use PCC Entry Switches

Monitor Systems Tape Loading Processor

Monitor On-Line Message Processor

Monitor Minute Processor

Monitor Message Check Processor

Monitor Queue Next Emergency Area Processor

Monitor Queue Primary Area Processor

Monitor System Tape Queueing Processor

Mon Orbit to Reentry Interphase Processor

Monitor Reentry Restart Tape Processor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

System Tape Trap Processor

Program Control Console Processor

Station Characteristics Tape Processor

High Abort Control Processor

Sense Output Processor

Orbit Restart Tape Processor

A-IO

MC 63-4

APPEN DIX B

POSTFLIGHT REPORTER SYMBOLIC

DESIGNATIONS

This appendix includes both the FORTRAN and the mathematical symbology
used to produce the postflight reports. The material in the FORTRAN list is

arranged alphabetically. Coordinate systems appearing at the end of this ap-
pendix are defined under the appropriate heading in Appendix B, with the ex-

ception of the last one--the intermediate rotational coordinate system which is
covered in NASA Working Paper 146.

FORTRAN Symbolic
Names

Mathematical

Symbology

A a
s

AC a
C

ARBAR a-R

AREA Area

ARGP

ARGPl

ASUBR AR

AXIS a

BC b
C

CANJ2 J2

CANJ3 J3

CANJ4 J4

CL L C

Definition

Spherical radius of earth

Equatorial radius, Clarke 1866 Sphe-
roid

Semi-major axis less spherical ra-
dius

Selected recovery area

Argument of perigee (defined in
volume MC 102)

Angular rotation of ea

Resultant acceleration--radial com-

ponent of the instantaneous acceler-

ation, g units

Semi-major axis

Polar radius, Clarke 1866 Spheriod

Canonical 2nd harmonic potential

Canonical 3rd harmonic potential

Canonical 4th harmonic potential

Geocentric latitude

B-1

MC 63-4

FORTRAN Symbolic
Names

CR

CS

D

DENS

DL

DLMI

DPHIR

_R

DTHTAP

EA

ECC

ECTRC

ECTRCl

ECTRC2

ECTRC3

ECTRS

EGT

B-2

Mathematical

Symbology

Y - Y nominal

C S

d

P

L D

A_.
1

6 0n

At
r

E

e

ECTRC

ECTRC 1

ECTRC 2

ECTRC 3

ECTRS

EGT

Definition

Crossrange distance

Speed of sound

Downrange distance

Atmospheric density

Geodetic latitude--latitude of present
position

Angle in equatorical plane between X
and the projection of capsule into that
plane

Angle at 2 w lift-off in the equatorial
plane between Tand longitude of GE
radar

Time delay to retrofire

Angle in equatorial plane between T

and longitude of pad

Eccentric anomaly, degrees

Eccentricity (defined in Volume MC
102)

Elapsed capsule clock time ofretro-

fire computed

ECTRC for emergency recovery area

ECTRC for end of present orbit

ECTRC for end of normal 3-orbit

mission

Elapsed capsule time to retrofire,

presently set

Elapsed ground time since retrofire
occurred

E

FORTRAN Symbolic
Names

EQURAD

FFLAT

GE

GI

GIGE

GIIP

GMTLC

GMTLO

GMTRC

GMTRCI

GMTRC2

GMTRC3

GMTRS

GRAVIT

GTL

GTRS

HA

HE

HPAD

Mathematical

S_nbolo_y

a
e

f

Y
e

Y °

1

(Yi - Ynom)GE

(Yi - Ynom)IP

GMTLC

GMTLO

GMTRC

GMTRC 1

GMTRC 2

GMTRC 3

GMTRS

ge

GTL

GTRS

h
a

h
e

h
O

GMTRC

area

Definition

Canonical equatorial radius

Canonical flattening

Earth-fixed flight-path angle

Inertial flight-path angle (positive
above local horizon), degrees

Actual minus nominal flight-path

angle for B-GE data, degrees

For IP-7090 data actual minus nomi-

nal flight-path angle for IP 7090 data,
degrees

Greenwich mean time of landing

Greenwich mean time of 2" lift-off

Greenwich mean time of retrofire

computed

for emergency recovery

GMTRC for end of present orbit

GMTRC for end of normal 3-orbit
mission

Present capsule retrofire clock set-

ting computed

Canonical value of gravity at equator

Time until landing

Time left until retrofire will occur

Apogee height

Height above oblate earth

Height of pad above mean sea-level

B-3

MC 63-4

FORTRAN Symbolic
Names

OME

OMEI

OMEGAE

P

PER

PHI

PHIIP

PHIMAX

PHIMIN

PSIE

PSII

QD

QS

RADIUS

RBAR

RL

RN

RPBAR

RRBAR

B-4

Mathematical

Symbology

fl

d

e

P

T

¢'i

qD

qs

r

m

R

rI

R N

P

r-R

Definition

Longitude of ascending node (defined
in volume MC 102)

Angular rotation of [l

Angular rotation of earth

Semi-latus rectum

Orbital period, minutes

Total angle in plane from longitude
of node to capsule

Geodetic latitude of retired impact
point

Geodetic latitude - maximum time

delay - impact point, degrees

Geodetic latitude - minimum time

delay - impact point, degrees

Earth-fixed heading

Inertial heading

Dynamic pressure

Heating rate, BTU/ft 2 second

Geocentric radial distance to the

capsule, feet

Radial distance of a spherical earth

Local radius of earth (i.e., at the

geocentric latitude of capsule)

Reynolds number

Geocentric radius at pad

Height above spherical earth,
nautical miles, _ = 20,910,000 feet

M,_ 63-4

FORTRAN SymDolic
Names

R01

S

SR

T

TA

THETA0

TP

TRETRO

VE

VI

VIVR

VIVRGE

VIVRIP

XICTRC

XINC

XL

XLAMP

XLMAX

XLM1

Mathematical

Symbology

r
o

S

SR

t

0
1

_o

t
P

t
r

V
e

V.
1

Vi/V R

(Vi/VR-Vi/VR n°m) GE

(Vi/VR-Vi/VR °m) IP

ICTRC

i

P

max

Definition

(=% + ho--) Total distance from geo-

center to pad

Range from launch pad

Re-entry range from retrofire, nau-
tical miles

Elapsed time since lift-off

True anomaly

Launch azimuth, from north, posi-
tive clockwise

Elapsed time from perigee passage

Time of retrofire

Earth-fixed velocity, ft/sec.

Inertial velocity, ft/sec.

Speed ratio

Actual minus nominal velocity ratio
for B-GE data

Actual minus nominal velocity rate
for IP 7090 data

Incremental change to reset clock

Inclination angle (defined in volume
MC 102)

Earth-fixed longitude

Longitude of perigee at perigee pas-

sage

Longitude - maximum time delay -

impact point,degrees

Longitude of launch pad

B-5

MC 63-4

FORTRAN Symbolic
Names

XLMMIN

XLMIP

XLPAD

XLRHO

XMA

XMACH

XMM

XMUE

NORBCP

XNU

XNUA

NUMORB

X

Y

Z

X1

Y1

Zl

Mathematical

Symbology

A
min

lip

L o

M
a

M

_M

_e

NORBCP

Y

V a

NUMORB

Y

Z

Definition

Longitude - minimum time delay-
impact point, degrees

Longitude of retired impact point

Geodetic latitude of pad

Geocentric latitude of pad

Mean anomaly

Mach number

Mean motion

Earth's gravitational constant (0 th
order harmonic}

Orbit capability

Kinematic viscosity

Greenwich hour angle from Tat mid-
night preceding launch

Orbit number

True Inertial coordinate system
(See Appendix B)

U

V

W

U1

Vl

Wl

U

V

W

fl

Pad coordinate system
(See Appendix B)

B-6

FORTRAN Symbolic
Names

XIP

YIP

ZIP

XIPI

YIPI

ZIP1

XI

ETA

ZETA

XI1

ETA1

ZETA1

YI1

XX

YY

ZZ

XXl

YY1

ZZl

Mathematical
Symbology

X

Y

Z

17

X

Y

Z

MC 63-4

Definition

IP 7090 coordinate system
(See Appendix B)

B-GE coordinate system {i.e., GE-
quasi-inertial} (See AppendixB)

Intermediate rotational coordinate

system

(See NASA Working Paper 146)

B-7

a Ar g' 1=26"_
lVi _._ UO--4

APPENDIX C

COORDINATE CONVERSION SYSTEMS

This appendix deals with the following coordinate systems involved in the
Postflight Reporter Program:

True inertial coordinates

GE quasi-inertial coordinates

IP 7090 quasi-inertial coordinates

Pad rectangular coordinates

_x,x, z,

x, Y, z,

u, v, w, fz, _,

In addition, the appendix includes definitions of Miscellaneous Transfor-
mations.

TRUE INERTIAL COORDINATE SYSTEM (X, Y, Z, _, _, _)

This fundamental system is a right-handed rectangular system centered at
the earth's center, X pointing to the first point of Aries (T) or vernal equinox,
Z lying along the earth's polar axis, and Y normal to the meridian plane. In
general, data in other systems are transformed to these coordinates prior to

processing. In the Postflight Reporter program, IPCNV converts IP 7090 data
to true inertial reference and GECNV converts B-GE data to true inertial

reference. However, MERCNV converts true inertial coordinates to pad rec-

tangular coordinates.

GE QUASI-INERTIAL COORDINATE SYSTEM (_,)7,_', _,_,_')

At two-inch lift-off, this system has the following configuration: _= and
/ are axes lying in the earth's equatorial plane, witb lying in the meridian

plane of the GE central radar, _ is the normal lying along the earth's polar
axis. The orlgin is at the earth's center and this system is a rectangular right-
handed set of axes.

If _ _bR is the angle between the meridian plane through the first point of

Aries (T) and the _:, Cplane at two-inch lift-off, then with terrestrial polar
rotation rate of _o radians/second after t seconds, this angle is changed by

e

C-1

MC 63-4

o t to the value 6 CR + o t. Therefore, if v is the Greenwich mean hour anglee e a

at two-inch lift-off and if _'0 represents the longitude of the GE central radar,

then 6 ¢R-- V a +)'0 (actually,)t O is negative for Western longitudes).

Since the relationship between the GE and true inertial frames is merely

a rotation about the common _or ¢ axis of angle6¢R+ Wet, the transformation
may be written.

Y- = sin (6¢R+ (Oet) cos (6¢R+ _Oet) 0 ,1

2 0 0 1

Thus, rtrue = Mi'GE where M is the above matrix. The velocity relationship is

obtained by differentiation, _)true = M _)GE' or explicitly

= sin (6¢R + _e t)

Z 0

cos (6¢R + %t) 0

0 1

I.P7090 QUASI-INERTIAL COORDINATE SYSTEM (X, Y, Z, :_,Y, Z)

At two-inch lift-off, this system has the following configuration: X lies in
the earth's meridian plane through Greenwich and in the equatorial plane. Z
lies in the polar axis. Y lies in the equatorial plane normal to the X, Z plane

and such that X, Y, Z forms a right-handed system.

If v is the Greenwhich hour angle at two-inch lift-off, then with terrestriala

angular rotation rate about the polar axis of _e radians/second, after t seconds

this angle is changed by %t to the value v a + Wet.

The relation between IP and true inertial coordinates is analagous to the
GE and true inertial relationship. The conversion between systems is given by
the following transformation:

C-2

Iv-Cuo-4

-Y = sin (v a + _e t)

o
-sin Va O)(X)cos (v + O_et) 0 Y

0 1 Z

(i = sin (v a + _e t) cos (Va + OJet) 0

0 0 1

PAD RECTANGULAR COORDINATE SYSTEM (u, v, w, _, -_, _,)

This is a rectangular coordinate system with origin at the launch pad. The
u axis points downrange, the w axis is normal to the tangent plane at the pad
and directed away from the surface, and the v axis is normal to the u, w plane
and directed eastward.

Since the system is hinged at the surface, a combination of rotations and
translations is necessary to convert from true inertial to the pad rectangular

system, tf 3 Op is the hour angle (at two-inch lift-off) of the launch pad, then

80p= Va+),pA D (_,PAD<0 for western longitudes). Then, as in previous

cases, after t seconds, _rot = Mi_ inertial is used to pass from true inertial to

rotational. To translate from geocenter to pad, _rot = Mi_inertial + r0""

In the tangent plane, rotation puts _rot relative to the equatorial plane--

normal trot" = Nrrot through Lp (geocentric latitude of the pad). Finally, to

rotate from east-north in tangent plane to downrange vs. crossrange through

the angle 00 (planned azimuth) rpad = Li_rot'" The matrices for the transfor-

mations are:

M

cos (80p + COet) sin (_ + _et) 0 /

P

= -sin (_0p+_et) cos ($¢_p+ _,t) 0

0 0 1

C-3

MC 63-4

(ro,cosL)__0ro'- r o, sin Lp

for geocentric pad latitude L
P

geodetic}.

a
c

fi

J I)+ ac

P cos 2 Lp bc

where r_. = R + h
O P 0

2 2
sin

h 0 = height of the pad above mean sea level

L
P

N

1 0 0 /

= 0 cos Lp, -sin Lp,

0 sin Lp, cos Lp,

2
tan L,

P
L p_

P

L

\

sin 00 cos 00 0

-cos 00 sin 00 0

0 O 1

To obtain the velocity relation, the translation and rotation matrices are com-
pounded and differentiated to find,

(in00cos000)(10 o/,} = -cos 00 sin O0 0 0 cos Lp, -sin Lp,

_v 0 0 1 0 sin Lp, cos Lp,/

r 0)cos (80p + COet} sin (8 _p COet} _ _

-sin 180 + _e t) cos(80 + _et) 0 Y- _e "_
P P

0 0 1 Z

C-4

MC 63-4

MISCELLANEOUS TRANSFORMATIONS

To obtain the geocentric latitude L C from the geodetic latitude L D with

respect to a spheroid of equatorial radius, a, polar radius, b, the relation tan

LC = ,(,b) 2 tan L D is used. To find the geocentric distance RC to a point on the
a

spheroid whose geocentric latitude is LC, R C = _/cos2 L C + (.____)2 sin 2 LC

is used.

Position in geocentric spherical coordinates (r, L C, _,) may be expressed in

(g__eocentric) true inertial frame by the relationships X = r cos L C cos X,
Y__= rcos L C sin_, _= r sinL C.

Derivations for data used in the Postflight Reporter processing programs
and their subroutines are shown below.

Flight path angle, y

/

• _=rvcosa buta=90 °-7 _
= rv sin r

Heading angle,

_ Vy

Project V onto YZ plane, tan ¢ = "_z

/

Vz

In a spherical triangle, sin @i
= sini

cos L C

0_ . .

O_ Slnl

Mach number, M

This is defined as the relative speed - local speed of sound ratio.

M = V e / C S, where I Ve I = I Vi--_e x_ I is the speed with respect to

rotating atmosphere.

C-5

MC 63-4

Reynolds number (per foot)

This is defined as the ratio of relative speed to local kinematic viscosity.

R N = V e / v.

Dynamic pressure

Dynamic pressure is the ratio of drag to drag coefficient. Therefore,

qD = 1/2 p Ve2 , where p is the local atmospheric density.

Stagnation heating rate

This is a function of altitude - for free stream ql = Kp u 3

for q = K l_u 3"15

where K, K 1 are given and u is free stream speed.

Downrange distance (RFLP)

The formula for downrange distance is the spherical trigonometric relation

(from the spherical_triangle),_ = cos -1 [sin L D sin Lp + cos L Dcos Lp

C-6

_ 63-4_v_ C

APPENDIX D

REPORT DATA FORMATS

This appendix presents the data formats for each of the postflight reports.

In accordance with specifications of NASA, the formats and heading comprise
the key for reporting of postflight data. Each report presents, in a specific time
interval, selected data about each applicable phase of the mission, as follows:

Phase Quick Look Three-Day Report Condensed Report

Launch 4 seconds 0.5 seconds 5 seconds

Abort 4 seconds 1.0 seconds 10 seconds

Orbit 2 minutes 24.0 seconds 1 minute

Re-entry 12 seconds 6.0 seconds 0.5 minute

At the beginning of each phase, a heading is printed, giving the name of the
phase, the GMT of lift-off, and the longitude of Aries at lift-off, in degrees. After
each heading there is a paragraph containing postflight information about the phase
under investigation. The data formats for each report are shown below. (The

mathematical symbology, which is defined in Appendix A, represents digital data
from the Postflight Reporter Program.)

QUICK LOOK DATA FORMATS

Launch

Line 1 t, sec u v w fi _

2 X Y Z X Y i

3 Vi Yi @i LC

4 t, hrs V e Ye _be L D r

5 t, min d Y V/V R AR S

6 t, see M qD RN qs

h
e

B

(r- R)

D-1

MC 63-4

Abort

Line 1 t, sec u v w fl _"

2 x Y z i

3 Vi Yi @i L C h h e

4 t, hrs V e Ye _be L D r (r-R)

5 t, rain d y A R S

6 t, sec M qD RN qs

Orbit

Line 1 t, min X Y Z X Y i

2 Vi Yi _bi L C h h e

3 Ve Ye _e L D r (r - R)

4 Blank

5 t T e i _
P

6 a -R 01 E M Q fl

Re-entry

Line 1 t, min X Y Z X Y

2 Vi Yi _i LC Y he

3 Ve Ye _e L D r (r - R)

4 M qD RN SR qs

THREE-DAY REPORT DATA FORMATS

Launch

Lines 1 through 6 are identical to the Launch format for the Quick
Look.

D-2

MC _OO --'_

Line 7 Cmin hmin Cmax k max

8 GO-NOGO AtR GMTRC

9 _V/VR-V/VRn°m)GE

(y-y nora)IP

Abort

i Area

(Y-Ynom)GE (V/VR-V/VRn°m) IP

Line 7

8

Lines 1 through 6 are identical to the Abort format for the Quick Look.

GMTRC ECTRC ICTRC GMTLC

Area ¢ IP h IP

Orbit

Line 7

Lines 1 through 6 are identical to the Orbit format for the Quick Look.

Area _bipOrbit number Orbit capability h a _'IP

8 (GMTRC)I (ECTRC) 1 (GMTRC) 2 (ECTRC) 2 (GMTRC) 3 (ECTRC) 3

9 GMTRS ICTRC GTRS GMTLC },
P

Re-entry

Lines 1 through 4 are identical to the Re-entry format for the Quick
Look.

Line 5 Area ¢IP)_ IP EGT GTL GMTLC

CONDENSED REPORT DATA FORMATS

Launch

Line 1 t, see V. Yi (r - _) V/VR area
1

2 L D k M qD

D-3

MC 63-4

Abort

Line 1

2

t, sec V i

M QD

m

(r - R)

¢IP

L D

kip

k

Orbit

Line 1

2

t, min V°

1

L D k

(r - R)

a

h
a

e

area (ECTRC) 2

Re-entry

Line 1

2

t, min V°

1

M

1

QD

{r - R)

¢IP

D-4

